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Abstract. This talk is about the hadronic light-by-light contribution to the muon anomalous magnetic moment,

mainly our old work but including some newer results as well. It concentrates on the model calculations.

Most attention is paid to pseudo-scalar exchange and the pion loop contribution. Scalar, a1-exchange and other

contributions are shortly discussed as well. For the π0-exchange a possible large cancellation between connected

and disconnected diagrams is expected.
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Figure 1. HLbL

contribution to the muon

anomaly aµ. The crossed

circle indicates the strong

interaction part.

1 Introduction

This talk is mainly an update of my talk from two years

ago [1] and has thus a very large overlap with it. In addi-

tion, this writeup should be read together with a number

of other contributions to this and the previous workshop

[2]. A more general introduction to the muon anomaly

aµ = (gµ−2)/2 was given in the talk by and Knecht [3]. An

alternative method to obtain the hadronic light-by-light-

contribution (HLbL) shown in Fig. 1 was discussed in the

talk by Colangelo [4]. The present status of the lattice cal-

culations of the same quantity were discussed by Lehner

[5] and Nyffeler [6].

The main reason for this sessions is the measurement

of the muon anomalous magnetic moment of [7] and the

discrepancy with the standard model prediction and the

new measurements in progress at Fermilab and under de-

velopment at J-PARC. Reviews of the theory can be found

in [8–10]. More references can be found in the remainder

of this talk and the talks mentioned above. The present

best estimate of the HLbL is (11 ± 4) × 10−10 [8, 10] or

(10.5±2.6)×10−10 [9]. The main difference is an estimate

of the errors which is always somewhat subjective. A new

report with the aim of getting a consensus is under way as

discussed in [11].

In this talk I will concentrate on the work done a long

time ago [12–14] as well as some newer work on the pion

ae-mail: bijnens@thep.lu.se

loop [15]. I will also discuss more recent contributions

about the pseudo-scalar exchange and quark-loop. I do

not present a new final overall number but will argue that

a good estimate for the pion-loop contribution is −(2.0 ±
0.5) × 10−10.

An often asked question is why one cannot simply

calculate the hadronic parts in Chiral Perturbation The-

ory (ChPT). ChPT is an effective field theory approxima-

tion to QCD valid at low energies. Since the muon has a

low mass, at first sight aµ should be a perfect quantity to

calculate in ChPT. This is not true while both for HLbL

and the hadronic vacuum polarization contribution (HVP)

there are integrals over all photon momenta present. The

hadronic part is thus not only at low-energies. The lowest-

order prediction for both HVP and HLbL is the same as for

scalar QED and is finite. However, higher orders require a

higher dimensional counterterm that is precisely the same

as the muon Pauli term. We are thus left without a pre-

diction beyond lowest order in ChPT. However, ChPT can

(and should be) used to put as many constraints as possible

on the underlying hadronic quantities.

We thus need to go beyond ChPT since we need high

energies and beyond perturbative QCD since we need low

energies for the hadronic quantities. The main options are

experiment, dispersion relations, lattice QCD and mod-

els. For the HVP contributions models only play a role in

understanding the results from the other approaches. For

HLbL we have not quite reached that stage but important

progress is being made as discussed by Colangelo, Lehner

and Nyffeler. In the future, the main roles for models will

be estimating the contributions that are not included in the

systematic approaches.

The requirement for a model calculation is simple to

formulate “do as well as you can.” That means con-

straining your model as much as possible from experi-

ment via measured states, form-factors and scattering pro-

cesses and from theory by including as many long-distance

constraints from ChPT and short-distance constraints from
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perturbative QCD. One should also use “common sense”

in varying model parameters, making sure your model is

general enough to describe what you need to describe and

if different regions are treated differently consistency be-

tween them should be checked.

An overview of general properties of the underly-

ing four-point functions and the early calculations is in

Sect. 2. Sect. 3 discusses the numerically largest contri-

bution, pseudo-scalar meson exchange. Next I discuss the

pion-loop contribution in some detail since here I have new

results [15]. The quark-loop, which has rather large theo-

retical errors, is discussed in Sect. 5. The remaining lead-

ing large Nc exchanges are scalar, discussed in Sect. 6, and

a1-exchange, Sect. 7. The π-loop contribution is treated in

more detail since there is where I have some new results

to present. Details are in Sect. 4. Conclusions and some

possible future directions are given in the last section.

2 General properties and early work

The underlying object is the four-point function

Πρναβ(p1, p2, p3) of four electromagnetic vector cur-

rents. We really need only the derivative w.r.t. p3 at

p3 = 0,
δΠρναβ(p1, p2, p3)

δp3λ

∣

∣

∣

∣

∣

∣

p3=0

. (1)

Πρναβ(p1, p2, p3) has in general 138 Lorentz structures

which reduces to 43 gauge-invariant structures. Note that

in four dimensions there really are 2 less, 136 and 41 [16].

Of the 138 more general structures 28 [15] actually con-

tribute (improving the 32 estimate of [13]). Each of these

functions depends on p2
1
, p2

2
, q2 and before the derivative

also on p2
3
, p1.p3, p2.p3. This should be compared with the

lowest order hadronic vacuum polarization where there is

one function of one variable. An alternative split is using

the helicity amplitudes for off-shell photon-photon scatter-

ing as used in the dispersive work by Colangelo and col-

laborators [4]. The choice of basis is definitely not unique

and different choices are appropriate for the different ap-

proaches.

After setting p3 → 0 the loop integrals over the pho-

ton momenta is 8 dimensional. Three of these integrations

are trivial and using Gegenbauer polynomial methods two

more can be done [10, 15, 17]. So, after having a model

or a computation of Πρναβ(p1, p2, p3) there is a triple inte-

gral over p2
1
, p2

2
, q2 left. The components and their deriva-

tives become multiplied with functions of p2
1
, p2

2
, q2 exam-

ples of which are in [10, 17] and the full results can be

found in [15]. In the work I have been involved in we

did the relevant integrations in Euclidean space, i.e. with

P2
1
, P2

2
,Q2 = −p2

1
,−p2

2
,−q2 always positive.

How models actually contribute to the muon anomaly

aµ can be studied by rewriting the integral over P,
1
P2

2
,Q2

in the form [8]

aµ =

∫

dlP1
dlP2

aLL
µ =

∫

dlP1
dlP2

dlQ aLLQ
µ (2)

with lP = (1/2) ln
(

P2/GeV2
)

. The reason for choosing

the logarithm is that this way it is easiest to see which

“π
0
”

Figure 2. The π0 exchange

contribution. The blobs and

the propagator need

modeling.

momentum region contributes. Alternatively one can in-

tegrate each momentum up to a cut-off Λ.

One should remember that the different contributions

are usually defined within a given model or approach.

What is included under the same name can therefore differ

and one should be careful when drawing conclusions from

comparing calculations.

The underlying problem is that the integration over

photon momenta p1, p2 in the diagram in Fig. 1 contains

both low and high momenta and mixed cases. Double

counting is thus a serious issue when using both quark and

hadron contributions. In Ref. [18] a partial solution was

found by using chiral p and large Nc counting to distin-

guish different contributions. This does not fully solve the

double counting issue but it is a good start. This sugges-

tion was followed by two groups doing a more or less full

evaluation of the HLbL. Kinoshita and collaborators [19–

21] (HKS) used meson models, did the pion-loop using the

hidden local symmetry model for vector mesons and the

quark loop with simple vector meson dominance (VMD).

Calculations were performed in Minkowski space. The

one I was involved in [12–14] (BPP) tried to use a con-

sistent model, the extended Nambu-Jona-Lasinio (ENJL)

model as in [22, 23], as much as possible but adjusted us-

ing measured form-factors and QCD constraints. The cal-

culations were done in Euclidean space. In fact, these two

are still the only existing full calculations, but many parts

have been evaluated using other approaches since then.

The main observations were:

• The largest contribution is π0 (and η, η′) exchange/pole.

Be aware that exchange and pole or not precisely the

same. Most estimates of this part are in reasonable

agreement as discussed in Sect. 3.

• The pion loop can be sizable, with a large difference

between the two evaluations and even larger numbers

have been proposed. Further discussion is in Sect. 4.

• The other contributions are smaller but there are many

and cancellations are present.

• Final numbers:

BPP: (8.3 ± 3.1) 10−10, HKS: (8.96 ± 1.54) 10−10.

3 π0-exchange

The single largest numerical contribution is given by “π0”

exchange, depicted in Fig. 2. The blobs need modeling

and the propagator in the ENJL model also has corrections

to the 1/(p2 − m2
π0 ). The pointlike vertex has a logarith-

mic divergence which is uniquely predicted [24, 25]. The

VMD form-factor in the π0γ∗γ∗ form-factor, the blobs,

were modeled in [13] with a variety of form-factors and

as a function of the cut-off Λ (corrected for the overall
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Table 1. The π0 exchange results of [13].

aµ × 1010

Λ Point- ENJL- Point- Transv. CELLO-

GeV like VMD VMD VMD VMD

0.5 4.92(2) 3.29(2) 3.46(2) 3.60(3) 3.53(2)

0.7 7.68(4) 4.24(4) 4.49(3) 4.73(4) 4.57(4)

1.0 11.15(7) 4.90(5) 5.18(3) 5.61(6) 5.29(5)

2.0 21.3(2) 5.63(8) 5.62(5) 6.39(9) 5.89(8)

4.0 32.7(5) 6.22(17) 5.58(5) 6.59(16) 6.02(10)

sign error discovered by [17]). We took the form-factor

that was made to fit the then existing data integrated up to

2 GeV as our main result with a guesstimate of the error.

This result was in quite good agreement with [20] which

used the pointlike-VMD approach. This contribution has

since been reevaluated many times using different models

and approaches. A partial list is:

BPP [13]: 5.9(0.9)× 10−10

Nonlocal quark model [26]: 6.27 × 10−10

DSE (Dyson-Schwinger modeling)[27]: 5.75 × 10−10

LMD+V [17]: (5.8 − 6.3) × 10−10

Formfactor inspired by AdS/QCD [28]: 6.54 × 10−10

Chiral Quark Model [29]: 6.8 × 10−10

Constraint via magnetic susceptibility [30]: 7.2 × 10−10

VV ′P model [31]: 6.66 × 10−10

All of these are in reasonable agreement, within the errors.

Future improvements will come when more experimental

results or the direct lattice calculations of the underlying

formfactors are included. One way to define precisely the

π0 pole contribution is the dispersive approach [32] and

the talk [4], but no numerical results have been published

so far.

Two more comments are needed. The above num-

bers are for the π0. One needs to take into account the

η and η′ exchange as well. The latter is enhanced due

to the charge combinations in the η′γ∗γ∗ vertex. In large

Nc models like the ENJL model, the pseudoscalar spec-

trum is not like QCD, one has a π0, a π̃ (ūu + d̄d quark

content) and a πs (s̄s). The π̃ has the same mass as the

π0 and due to the quark charges is contributes 25/9 times

the π0 contribution. Lattice QCD calculations with only

connected diagrams included will have the π̃ contribution

as well so there will be an unphysical enhancement com-

pared to the QCD result for the pseudoscalar exchange

part. This is discussed in more detail in [15]. In [13] we

used pointlike-VMD to estimate the ratio of π0, η, η′ con-

tributions as 5.58, 1.38, 1.04. Models that include large

Nc-breaking effects and fit the mixings to data typically

end up with very similar numbers. The total pseudoscalar

exchange contribution I thus estimate to be

aPS
µ = (8 − 10) × 10−10 (3)

An example of a specific calculation is the AdS/QCD re-

sult of aPS
µ = 10.7×10−10 [33] which also includes excited

pseudoscalars.

The other comment is that the short-distance behaviour

of the four-point function is known in several limits. In

Figure 3. The charged pion loop contribution.

particular when P2
1
≈ P2

2
≫ Q2 the four point func-

tion is related to the axial-vector-vector-vector three-point

function [34]. This three point function has a number of

exact properties in QCD and we thus know how it be-

haves. The above models for π0-exchange do not exhibit

this behaviour. It can be implemented via making one of

the blobs in Fig. 2 pointlike [34] and one then obtains

7.7 × 10−10 for the π0-exchange contribution. Plots how

this affects the contribution of different momentum regions

are in [8]. The above behaviour of the four-point function

must be obeyed in a full calculation, however whether one

implements it via π0-exchange is a choice. Models incor-

porating a short-distance quark-loop contribution have the

short-distance part of this included [8, 26]. One can see

this when comparing quark-loop plus pseudo-scalar ex-

change of [13] with pseudo-scalar exchange of [34].

4 π-loop

The π-loop contribution to the four-point function is de-

picted in Fig. 3. The leftmost diagram is the naive one,

the other two are required by gauge-invariance. In more

general models also a diagram with three photons in one

vertex and one with all four in the same vertex might be

needed. These have been included in the calculations men-

tioned below when needed.

The simplest model is a point-like pion or scalar QED

(sQED). This gives a contribution of about −4 × 10−10.

The single photon vertex is in all determinations used

as including the pion form-factor. For this one can use ei-

ther the VMD expression or a more model/experimental

inspired version. For the ππγ∗γ∗ vertex there were origi-

nally two main approaches used, full VMD (BPP) and the

hidden local symmetry model with vector mesons (HKS).

The former is essentially using sQED and putting a VMD-

like form-factor in all the photon legs. This was proven

to be a consistent procedure in [13]. We obtained there

a result of −1.9 × 10−10 using an ENJL inspired pion

form-factor. Using a simple VMD typically gives about

−1.6 × 10−10. This version is exactly what is called the

model-independent part of the two-pion contribution in

[4, 32, 35]. The reason for the lower number compared

to the point-like pion loop is obvious in Fig. 4 where we

show a
LLQ
µ of (2) as a function of P1 = P2 and Q.

HKS [19, 20] used a different approach. Due to the

then existing arguments against full VMD they used the

hidden local symmetry model with only vector mesons

(HLS) and obtained−0.45×10−10. The difference between

this and the previous numbers was the reason for the large

error quoted on the pion-loop. This difference was rather
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Figure 4. The momentum dependence of the pion loop contribu-

tion. Plotted is a
LLQ
µ of (2) as a function of P1 = P2 and Q. Top

surface: sQED, bottom surface:full VMD.
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Figure 5. −a
LLQ
µ of (2) as a function of P1 = P2 and Q. Top

surface: full VMD, bottom surface: HLS.

puzzling, one reason could be that the HLS model does

not have the correct QCD short distance constraint when

looking at the two-photon vertex with the same and large

virtuality for both photons, the full VMD model has the

correct behaviour. This version of the HLS model also

does not give a finite prediction for the π+-π0 mass dif-

ference. The reason for the large numerical difference is

indeed the short distance behaviour. The low momentum

behaviour is very close but the negative contribution above

1 GeV, clearly visible in Fig. 5, is the main reason for the

difference [15, 36]. A comparison as a function of the cut-

off can be found in [37]. In fact, using the HLS with an

unphysical value of the parameter a = 1, which then sat-

isfies the abovementioned short-distance constraint gives

very similar numbers as full VMD. This is shown in Fig. 6

From this we conclude that a number in the range −(1.5-

1.9)×10−10 is more appropriate with an error of half to 1/3

that.

More recently, it was pointed out that the effect of

pion polarizability was neglected in these calculations

and a first estimate of this effect given using the Euler-

Heisenberg four photon effective vertex produced by pions

[38] within Chiral Perturbation Theory. This approxima-

tion is only valid below the pion mass. In order to check

the size of the pion radius effect and the polarizability we

have implemented the low energy part of the four-point

function and computed a
LLQ
µ for these cases. Partial re-

sults are in [36, 37] and the full results in [15]. The effect

of the charge radius is shown in Fig. 7 compared to the

 0.1
 1

 10 0.1  1  10

 0
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 4e-11

 6e-11
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 1e-10
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P1 = P2
Q

-aµ
LLQ

Figure 6. The momentum dependence of the pion loop contribu-

tion. −a
LLQ
µ of (2) as a function of P1 = P2 and Q. Top surface:

HLS a=1, bottom surface: full VMD.
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Figure 7. −a
LLQ
µ of (2) as a function of P1 = P2 and Q. Top

surface: full VMD, bottom surface: ChPT with L9 = −L10 so the

charge radius is included but no polarizability.
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VMD, notice the different momentum scales compared to

the earlier figures. As expected, the charge radius effect is

included in the VMD result since the latter gives a good

description of the pion form-factor. Including the effect of

the polarizability can be done in ChPT by using experi-

mentally determined values for L9 and L10. The latter can

be determined from π+ → eνγ or the hadronic vector two-

point functions. Both are in good agreement and lead to a

prediction of the pion polarizability confirmed by the com-

pass experiment [39]. The effect of including this in ChPT

on a
LLQ
µ is shown in Fig. 8 [15, 36, 37]. An increase of

10-15% over the VMD estimate can be seen.

ChPT at lowest order or p4 for aµ is just the pointlike

pion loop or sQED. At NLO pion exchange with pointlike

vertices and the pionloop calculated at NLO in ChPT are
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a1

a1 a1

Figure 9. Left: the a1-exchange that produces the pion polariz-

ability. Right: an example of a diagram that is required by gauge

invariance.

needed. Both gives divergent contributions to aµ, so pure

ChPT is of little use in predicting aµ. If we want to see the

full effect of the polarizability we need to include a model

that can be extended all the way, or at least to a cut-off

of about 1 GeV. For the approach of [38] this was done

in [40] by including a propagator description of a1 and

choosing it such that the full contribution of the pion-loop

to aµ is finite. They obtained a range of −(1.1-7.1)× 10−10

for the pion-loop contribution. I find this range much too

broad. One reason is that the range of polarizabilities used

in [40] is simply not compatible with ChPT. The pion po-

larizability is an observable where ChPT should work and

indeed the convergence is excellent. The ChPT prediction

has also recently been confirmed by experiment. Our work

discussed below indicates that −(2.0±0.5)×10−10 is a more

appropriate range for the pion-loop contribution.

The work described below is be published in [15]. Pre-

liminary results have been reported at several conferences,

see e.g. [41, 42]. The polarizability comes from L9 + L10

in ChPT. Using [43], we notice that the polarizability is

produced by a1-exchange depicted in Fig. 9. This is de-

picted pictorially in the left diagram of Fig. 9. However,

once such an exchange is there, diagrams like the right one

in Fig. 9 lead to effective ππγγγ vertices and are required

by electromagnetic gauge invariance. This was done in

[40] via the propagator modifications. We deal with them

via effective Lagrangians incorporating vector and axial-

vector mesons.

If one looks at Fig. 9 one could raise the question “Is

including a π-loop but no a1-loop consistent?” The answer

is yes with the following argument. We can first look at a

tree level Lagrangian including pions ρ and a1. We then

integrate out the ρ and a1 and calculate the one-loop pion

diagrams with the resulting Lagrangian. In the diagrams of

the original Lagrangian this corresponds to only including

loops with at least one pion propagator present. Numerical

results for cases including full a1 loops are presented as

well below [15]. As a technicality, we use anti-symmetric

vector fields for the vector and axial-vector mesons. This

avoids complications due to π-a1 mixing. We add vector

Vµν and axial-vector Aµν nonet fields. The kinetic terms

are given by [43]

− 1

2

〈

∇λVλµ∇νVνµ −
M2

V

2
VµνV

µν

〉

+ V ↔ A . (4)

First we add the terms that contribute to the Li [43]

FV

2
√

2

〈

f+µνV
µν
〉

+
iGV√

2

〈

Vµνuµuν
〉

+
FA

2
√

2

〈

f−µνA
µν
〉

(5)
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Figure 10. −aµLLQ as defined in (2) as a function of P1 = P2

and Q with a1 but no full a1-loop. Parameters determined by the

Weinberg sum rules.

with L9 =
FV GV

2M2
V

, L10 = −
F2

V

4M2
V

+
F2

A

4M2
A

. The Weinberg sum

rules imply in the chiral limit F2
V
= F2

A
+ F2

π, F2
V

M2
V
=

F2
A

M2
A

and requiring VMD behaviour for the pion form-

factor FVGV = F2
π.

First, look at the model with only π and ρ. The one-

loop contributions to Πρναβ are not finite. They were also

not finite for the HLS model of HKS, but the relevant

δΠρναβ/δp3λ was. However, in the present model it is only

finite for GV = FV/2 and then the result for aµ is identical

to the HLS model. The same comments as made for the

HLS model thus also apply.

Next we do add the a1 and require FA , 0. After a

lot of work we find that δΠρναβ/δp3λ|p3=0 is finite only for

GV = FV = 0 and F2
A
= −2F2

π or, if including a full a1-

loop F2
A
= −F2

π. These solutions are clearly unphysical.

We then add all ρa1π vertices given by

λ1

〈[

Vµν, Aµν
]

χ−
〉

+ λ2

〈

[

Vµν, Aνα
]

hµ
ν
〉

+ λ3

〈

i
[

∇µVµν, Aνα
]

uα
〉

+ λ4

〈

i
[

∇αVµν, Aαν
]

uµ
〉

+ λ5

〈

i
[

∇αVµν, Aµν
]

uα
〉

+ λ6

〈

i
[

Vµν, Aµν
]

f−
α
ν

〉

+ λ7

〈

iVµνA
µρAνρ

〉

. (6)

These are not all independent due to the constraints on Vµν
and Aµν [44], there are three relations. After a lot of work

[15] we found that no solutions with δΠρναβ/δp3λ|p3=0 ex-

ists except those already obtained without Λi terms. The

same conclusions holds if we look at the combination that

shows up in the integral over P2
1
, P2

2
,Q2. We thus find

no reasonable model that has a finite prediction for aµ
for the pion-loop including a1. If we choose the param-

eters as fixed by the Weinberg sum rules and the VMD be-

haviour of the pion-form factor we obtain −a
LLQ
µ as shown

in Fig. 10. Adding a full a1-loop changes the plot only

marginally. As long as we require the correct polariz-

ability and a VMD-like form-factor behaviour, the plots

look quite similar for all cases below 1 GeV. The inte-

grated value up to Λ for a number of cases is how in

Fig. 11. We see that all models end up with a value of

aµ = −(2.0 ± 0.5) × 10−10 when integrated up-to a cut-off

of order 1-2 GeV. We conclude that that is a reasonable

estimate for the pion-loop contribution. The main missing

part is the π-π rescattering.
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[15].
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and Q for several ratios P1/P1. The lines indicate the surface.

The dispersive approach has numbers that are com-

patible with the above and the inclusion of scalar ex-

change, a
π−loop
π = (−2.4±0.1) 10−10. See the discussion in

[4, 45, 46].

5 Quark-loop

The pure quark-loop contribution with a constant mass is

known analytically. One of the surprises is that it con-

verges rather slowly. A significant portion is from high

momentum regions. With a constituent quark mass of

300 MeV and a cut-off of 1(2) GeV 50(25)% of the full

contribution is still missing. A more visual illustration of

this is the plot of a
LLQ
µ defined in (2) of this contribution.

The contribution is plotted in Fig. 12 as a function of P1

and Q for several ratios of P2/P1. The volume under the

curve is proportional to aµ. The contribution peaks for

P1 ≈ P2 ≈ Q and around 1 GeV. In [13] we used the ENJL

up to a cut-off Λ and added a short-distance quark-loop

where we used the quark-mass MH = Λ as a lower cut-off.

The estimate used by HKS was a quark-loop damped by

VMD factors in the photon legs. The results are given

Table 2. The quark-loop contribution with VMD damping, the

ENJL model and with a heavy quark mass as cut-off. The

numbers are aµ × 1010.

Cut-off sum

Λ mass- ENJL

GeV VMD ENJL cut masscut

0.5 0.48 0.78 2.46 3.2

0.7 0.72 1.14 1.13 2.3

1.0 0.87 1.44 0.59 2.0

2.0 0.98 1.78 0.13 1.9

4.0 0.98 1.98 0.03 2.0

8.0 0.98 2.00 .005 2.0

in Tab. 2. Notice especially the stability when we add

the ENJL and the short-distance contribution in the region

Λ = 1-8 GeV. The conclusion is that the quark-loop is

about 2 × 10−10. In the ENJL model the quark-loop and

scalar exchange are needed together to have correct chiral

symmetry. The sum of both is very similar to the quark-

loop estimate of HKS.

There are a number of estimates of the quark-loop that

lead to much larger numbers. These have all in common

that there is a momentum region with a fairly small (con-

stituent) quark mass that is not shielded by a VMD-like

mechanism. The most prominent example of this is the

DSE estimate of [47] 10.7(0.2)× 10−10. The present status

of this calculation is given in [16]. It not yet a full cal-

culation but includes an estimate of some of the missing

parts. This DSE model describes a lot of low-energy phe-

nomenology in a way very similar to the ENJL model. I

am quite puzzled by the difference in results.

Similar size numbers are obtained in models with a

low constituent quark mass where no VMD-like dynami-

cal effects are included. Examples are the nonlocal chiral

quark model [48] with 11.0(0.9) × 10−10 and a number of

estimates within the chiral quark model (7.6− 8.9)× 10−10

[29], (11.8−14.8)×10−10 [49] and (7.6−12.5)×10−10[50].

The interpretation varies from an estimate to the full HLbL

or just a part that needs to be added to other contributions.

6 Scalar exchange

The estimate of the scalar exchange contribution in the

ENJL model is −0.7 × 10−10. Similar size estimates have

been obtained when exchanging a sigma-like particle. It

should be pointed out that the scalar in the ENJL model

has a phenomenology similar to the sigma but is quite a

different underlying object.

A problem here is to distinguish scalar exchange from

two-pion or pion-loop contributions. This is one of the ar-

eas where the method of [4, 32] as used in [45, 46] allowed

for major progress.

7 a1-exchange

The exchange of axial vectors in the ENJL model was es-

timated in [13] to be about 0.6× 10−10, but due to the high

mass involved, even with a cut-off of 2 GeV only half the
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contribution was there. The ENJL part also includes some

pseudo-scalar meson exchange due to the structure of the

calculation.

Axial-vector meson exchange in a more phenomeno-

logical way was done using two multiplets in [34] who

obtained 2.2 × 10−10. It was later found that when correct

antisymmetrization is included, this becomes smaller by a

significant factor and is again in the ballpark of the ENJL

result. This was noticed by F. Jegerlehner. He obtains

about (0.76 ± 0.27) × 10−10 for the axial-vector exchange

[51, 52]. The evaluation of [53] is also in reasonable agree-

ment with the ENJL estimate.

8 Conclusions

The present number for the HLbL contribution to the muon

anomaly, aµ = (gµ−2)/2, is (11±4) or (10.5±2.6)×10−10

[8–10] depending somewhat on which error estimates and

which contributions are taken into account. In this talk I

have given an overview of a number of model estimates

with the emphasis on my old work [12–14] as well as a

number of newer developments. For the latter I have spent

quite some time on our reevaluation of the pion loop con-

tribution [15, 36, 37, 41, 42], as well as given a number

of arguments why the HLS number of [19, 20] should be

considered obsolete. The conclusion is that the pion-loop

contributes with −(2.0 ± 0.5) × 10−10.

One of the remaining problems in the model approach

is that the class of models with an “unshielded” quark-loop

at relatively low-energies for the photons tend to obtain

larger numbers. Whether this is a real phenomenon or not

is a question which needs to be settled. My own opinion

there is that I see no counterpart of it in γγ → hadrons at

low to intermediate energies beyond the already included

single meson and two-pion exchanges.

For contributions of different mechanisms, progress

can be expected both from the dispersive approaches men-

tioned and experiment restricting the couplings of off-shell

or virtual photons to meson that go into the modeling. Al-

ternatively, a full new model calculation that includes phe-

nomenology beyond what the ENJL does, is very desirable

as well as more work on the short-distance aspects.
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