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1. Introduction

This talk discusses some recent applications of Chiralufmtion Theory (ChPT) relevant
for lattice QCD. In Secf]2 we discuss the two-loop finite voticorrections to masses and decay
constants for a large number of cases. The ChPT frameworkROHI that includes most of the
results described in this talk is presented in Sgct. 3. Thie et is devoted to vector two-point
functions where we discuss results for the disconnectedstiadge quark contributions and finite
volume corrections at two-loop order including twist effec The final section discusses recent
work onK,3 form-factors at one-loop order in the twisted, staggeratiartially quenched case.

The calculations here assume an infinite time extent andare ih thep-regime, i.e.m; L
not too small and extra zero mode contributions of the pseedtars are not included. The con-
ventions used are Minkowskian.

2. Finite volume: masses and decay constants

The first applications of ChPT to finite volume (FV) were don€fi]. The first two-loop
FV calculations were the mass in the two-flavour cdbe [2] &rdvecuum-expectation-value for
3-flavours [B]. Further two-loop progress was delayed uthtl two-loop sunset-integrals were
worked out for the general mass caffe [4]. With these, the Fkéctions at two-loop order were
done for the two- and three-flavour cafk [5]. As an examplé®fype of corrections that were
obtained the relative finite volume corrections for the pinass is shown in Fid] 1(a). Thef-
correction is of moderate size and the two- and three-flavesult are essentially identical. This
is as expected since for the finite volume corrections tha-fops are the dominant part by far.
For the kaon mass, FifJ. 1(b), tip& corrections is much larger than the one-loop result. The fina
correction is of reasonable size. The reason is that for élo@ knass at one-loop there is no pion
contribution. For the decay constant the same agreemewebpttwo- and three-flavour ChPT
exists for the pion and for the kaon the one-loop finite volwaoeection to the decay-constant is
of normal size since it includes a pion contribution. The figucan be found if]5].

With the full result for the sunset-integrals at finite vokignumber of existing calculations at
infinite volume at two-loop order could also be extended tibefimolume. The partially quenched
ChPT three-flavour results for masses and decay-constEffdfpwere recalculated and extended
to finite volume in [B]. The two-loop results for masses, gecanstants and vacuum-expectation-
values for QCD-like theorieg][9] were extended to the plytiguenched case and to finite volume
in [[Ld]. Plots for a number of relevant cases can be founddeetpapers.

3. Chiron

The main purpose of doing partially quenched and finite veliwo-loop ChPT calculations
is that they can be used by the lattice QCD community. Howeter expressions are normally
very long. The numerical programs have been available aseafmam the authors but a more
general numerical framework seemed useful. All resultsriasses and decay constants at two-
loop order referred to above are available already in thradmork CHIRON [T]L], written in C++.
The library provides a number number of classes for dealiitiy wput parameters and the ChPT
low-energy-constants (LECSs). It also contains a large rermmbexamples.
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Figurel: The relative finite volume corrections for the pion and kaasssquared.

4. The vector two-point function and HVP

The lowest-order hadronic-vacuum polarization (HVP) dbotion to the muon anomalous
magnetic moment was discussed a lot at this conference,axiew can be found in the plenary
talk by H. Wittig [I2]. The underlying problem is that one deevalues of the two-point function
of electromagnetic currents at low valuesgsfof ordermf, and below at rather high precision.
See e.g. the plot ifL3]. Two issues are of importance: the sf the more difficult to calculate
disconnected part and the size of the finite-volume cowestiChPT can help with both.

4.1 Disconnected and strange quark contributions

The underlying object is the two-point function of vectorreunts:
iy (@) =i [ a%e™(T (%0012 (0) @.0)

For HVP we need it with the electromagnetic current with twothree- flavours of light quarks,
but we also define a number of simpler currents

. — . _ . — . _ . 2 _ 1-— 1_
B —dybu, jE=0yu, Y =dyd, jE =sphs, 15=§UV“U—§dV“d<—§SV“S>- (4.2)

In lattice QCD the two-point functions have two types of e¢tdmittions: connected or disconnected
shown schematically in Fi§] 2. The size of the different dbaotions has been discussed at one-
loop order in ChPT in[[14]. In this talk and[ [15] we have exteddheir results to two-loop order
and generalized it in a number of other ways. Referenceshtr papers can be found ihJ12] 15].
We will use two main observations in order to estimate the sfzdisconnected to connected
contributions. The first is that the singlet vector currem¢sinot couple to mesons until rather high
order in ChPT. The coupling starts pt via the Wess-Zumino-Witten term but this contributes
only at orderp'?, the normal coupling starts at ordgt and thus only contributes at ordp?. As
a consequence, only direct counter-term contributiongpegeent for the singlet current at order
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Figure2: A schematic drawing of disconnected and connected cotiitsl The dots are insertions of the
currents and the lines are the valence quarks. The backginditates the sea-quarks and gluons.
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Figure3: (a) The different contributions td ,p+ ;- (¢?), i.e. the connected part. (b) The Ratio of the discon-
nected to connected part for the different contributiortsAithout adding the VMD part to the connected.

p* and p®. These can change the ratios discussed below. Howevemye part of higher loop
corrections will have the same ratio.

For the two-flavour case we have thaf! , is fully connected[1! only disconnected and
Mfy is the sum of the two. Since the singlet current does not eowglalso have thﬂé‘u‘;d)u =0
for the contributions mentioned above. The disconnectedpthus—1/2 time the connected part
for those contributions. The relatidiee = 2M%Y . + §M’ implies that forMge the disconnected

part is—1/10 of the connected part for those contributions.

There are new LECs that have couplings to the singlet curkésing a VMD like estimate we
find that the LEC contributions only contribute to the corted@art. These will thus lower the ratio
even further. In infinite volume the two-point functions ajieen byn’,' = (oMo — g?gH) ngﬂ
and for HVPI1 = N (¢?) — NM(0) is relevant. This is what is plotted in Fig. 3. For the VMD
estimate we usﬁlgﬁw =4F2/(MZ —¢?). The loop contributions as well as the VMD contributions
for the connected part are shown in Hip. 3(a). The ratio afatisected to connected is shown in
Fig. B(b). The pure pion part is exactlyl/2 and kaon and eta loops give only small corrections.
Adding the VMD contributions lowers the ratio significantig shown in[[45].

The same method can be used to calculate the strange quarikgton. Here we find a very
strong cancellation betweepf and p® contributions. We end up estimating the main part from
@-exchange. More numerical results and plots can be fourf@iih [The partially quenched case
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Figure 4: The finite volume contributions with twisted boundary cdiwfis for several components of
I'I’;;Xn+ (q). Shown are the partially twisted up quark results to twaplooder. The one-loop result is always

shown as the nearest thin line. The plotisifpil = 4. (a)q= (O, /—R,0, 0) (b)q= (07 V\;éqz, Vﬁqz,o).

has been done as wellT]16] 17], allowing to study the discctedestrange quark contributions.

4.2 Twisting

In a finite volume with periodic boundary conditions onlyatiste momentg' = 2nni/L with
n' integer are acceptable. Twisted boundary conditions faairequarksg(x + L) = eieéq(x‘) al-
low instead forp' = 8'/L 4+ 2rm' /L. Using this a continuous momentum space can be mapped
out. ChPT for these boundary conditions was introduce{{@ [fHowever, this reduces the cubic
symmetry imposed by the cubic box even further. In generalstrould thus remember to take this
into account, most quantities can depend on all componétie @patial momentum and there are
many more form-factors in general. In addition, charge wgaiion involves a change of momen-
tumt. In particular the two-point functiofl4” (q) = i | d*xé™(T (j& (x)j4'(0))) with j*, = dy*u
satisfiesd, (T(j% ()j1(0))) = 8 (x)(dy’d —0yu) . This leads to the Ward-Takahashi identity
qyl'l‘r‘r‘f = (uy*u— d_y“d>. Because of the twisted boundary conditions the r.h.s. camheero.
Our one- [1P] and two-loop result§ J1B,] 17] for finite voluméiwitwisted boundary conditions
satisfy the Ward identity. Related discussions at one-icaip be found in[[0]. Our main new
result here is that the two-loop corrections for the finitkuawe corrections are of reasonable size.
The is shown for two different ways of choosing the twist @nigl Fig.[4. The plots are shown for
the partially twisted case, i.e. only the valence up quaskatwisted boundary condition. There
is in fact very little numerical difference between the yutlvisted, also the sea up-quark twisted,
and the partially twisted case. As one can see, the finitenveloorrections for the two different

twists shown in (a) and (b) in Fif] 4, at the same valug®ofare different. This allows for testing

INote that because adding a constant background field isagaivto imposing twisted boundary conditions, what
is called momentum is somewhat ambiguous. We always usédtweg' = 6'/L +2m' /L.
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the finite volume calculation using the same underlyingdattonfigurations. Another example is

shown in [16[17].

5. Ky

The decayK — 1¢v is one of the major sources for determining the CKM elenfi¢rt. To do
this requires knowledge to high precision of the form-fadto at g = 0. Lattice QCD is now the
most precise way to determine this and one main remainiig isrthe finite volume correction. As
in the previous section, partial twisting is often employleere such that the form-factor gt = 0
can be calculated directly. The work discussed in this sedsi in [21,[1]].

Earlier ChPT work orK;3 and related form-factors is the original one-loop wdrK [22e
two-loop work without [2B] and with[[34] isospin breaking dathe one-loop partially quenched
staggered calculatioff [R5]. Earlier work on finite volumereotions is [2]].

As in the previous section, finite volume and twisting leathtwre form-factors and a different
Ward-Takahashi identity. With the scalar and vector foatidrs ofK to rrtransitions defined as

(1 ()57 u(0)[K°(p)) =F (P + Pp) + F-Gu+hy, (7T (p)[(Ms—my)SW0)|K®(p)) =p,

and usingy = p— p’ the Ward identity become®? — p’?) f; +?f_ +gth, = p. Note the presence
of extra terms compared to the infinite volume case in bottatgus. The split between, , f_
andh,, is not unique but is useful in presenting results.

In [R3,[17] we have calculated the form-factdts, f_,h, andp in partially quenched, twisted
and staggered ChPT. Our result satisfy the Ward identityyaically and numerically. Formulas,
plots and more numerical results can be found i [2]L, 17]ekier show numerical results for the
finite volume corrections corresponding to 2 MILC lattic@se relevant parameters can be found
in the top Tab[[1. The numerical results are shown for all semthe Ward identity but such that
the f, term is normalized to one. In Tafl. 1 we show results for thi#ferdnt cases: staggered
and partially twisted with an up twist angle the same in thregtspatial direction, staggered and
“unstaggered” with a partially twisted up-quark in one satirection. Note the different finite
volume corrections for the different twist cases. Theseagain be used to test the finite volume
corrections using the same underlying lattice configunatio
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