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Abstract

An analog of Quantum Chromo Dynamics (QCD) sector known as mirror QCD (mQCD) can

affect the cosmological evolution and help in resolving the Cosmological Constant problem. In

this work, we explore an intriguing possibility for a compensation of the negative QCD vacuum

contribution to the ground state energy density of the universe by means of a positive contribution

from the chromomagnetic gluon condensate in mQCD. The trace anomaly compensation condition

and the form of the mQCD coupling constant in the infrared limit have been proposed by analysing

a partial non-perturbative solution of the Einstein–Yang-Mills equations of motion.
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I. INTRODUCTION

The ground state of Yang-Mills (YM) theories plays a critical role in both Particle Physics
and Cosmology. In particular, the gluon condensate in Quantum Chromo Dynamics (QCD)
largely determines non-trivial properties of the topological QCD vacuum and is responsible
e.g. for the color confinement effects and hadron mass generation which can be understood
beyond the Perturbation Theory (PT) only (for a comprehensive review on the QCD vac-
uum, see e.g. Refs. [1–4] and references therein). The gluon condensate directly influences
properties of the quark-gluon plasma and its hadronisation, as well as dynamics of the QCD
phase transition. On the other hand, YM condensates have various implications in the cos-
mological evolution ranging from the Cosmic Inflation [5–7] to the phenomenon of late-time
acceleration and the Dark Energy (DE) [8–10] (see also Refs. [11–16]).

Currently, the Cosmological Constant (CC) with the vacuum equation of state w ≡
p/ǫ = −1 is a preferred scenario for the late-time acceleration epoch supported by a wealth
of recent observations provided that w = −1.006 ± 0.045 (see e.g. Refs. [17, 18]). Despite
of many DE/CC models existing in the literature, there is not a compelling resolution of
the CC problem i.e. why the CC term is small and positive as well as why the CC term is
non-zeroth and exists at all. From the Quantum Field Theory (QFT) viewpoint, the ground
state energy density of the universe should account for a bulk of various contributions from
existing quantum fields at energy scales ranging from the Quantum Gravity (Planck) scale,
MPL ≃ 1.2 · 1019 GeV, down to the QCD confinement scale, ΛQCD ≃ 0.1 GeV. Even such
relatively well-known vacuum subsystems of the Standard Model (SM) as the Higgs and
quark-gluon condensates exceed by far the observed cosmological constant which is often
considered as a severe problem [19, 20] (for recent reviews on this topic, see e.g. Refs. [21–
23] and references therein). Also it is well known, that an every field in the universe forms
a divergent perturbative vacuum contribution, which is usually cut off at the Planck scale.
The cancellation of these contributions may need the introduction of additional bosonic and
fermionic fields putting important constraints for the particle spectrum [24–26].

In this work, we discuss the problem connected with formation of big non-perturbative
vacuum contributions on the hadronic scale after the QCD phase transition, assuming that
the contributions from higher scales are already compensated. In the case of confined QCD
with color SU(3) gauge symmetry, there is a rather unique (negative-valued) contribution
to the ground state energy of the universe originating from the non-perturbative quantum
fluctuations of the quark and gluon fields [1, 2, 27, 28], ǫQCD < 0. Given the fact that the
CC term observed in astrophysical measurements is very small (and positive-valued),

ǫCC > 0 ,
∣

∣

∣

ǫCC

ǫQCD

∣

∣

∣
≃ 10−44 , (1.1)

one must eliminate the QCD vacuum contribution, ǫQCD, with an unprecedented accuracy
over forty decimal digits. A dynamical mechanism for such a gross cancellation of vacua
terms is yet theoretically unknown although several possible scenarios have been discussed
so far e.g. in Refs. [9, 21, 29–31]. This work is devoted to making a further step in exploring
this possibility in quantum YM theories with a non-trivial ground state.

Clearly, in order to cancel the QCD vacuum contribution, ǫQCD, formed during the QCD
phase transition epoch, a positive contribution to the vacuum energy density should be
formed at the same QCD energy scale ΛQCD. Where could such an extra contribution
originate from?
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Here we suggest a new scenario of compensation realized by means of a hidden (mirror)
sector of particles [32] which correspond to the extra non-Abelian gauge group and whose
possible interaction with the visible SM sectors is strongly suppressed.

In particular, a class of models known as Neutral Naturalness theories has been pro-
posed in the literature [33–35] as a promising solution of the naturalness problem in the SM
protecting the weak scale from large radiative corrections. Various phenomenological impli-
cations of such a “Mirror World” concept have been discussed e.g. in Ref. [36]. In particular,
the mirror color SU(3) gauge group is typically assumed to be a symmetry describing the
confined phase in full analogy with ordinary QCD revealing interesting signatures at the
Large Hadron Collider due to e.g. a mixing of mirror glueballs with the Higgs boson [37].

Quite naturally, the quantum vacua contributions from the “Mirror World” should con-
tribute to the CC on the same footing as known vacua since “mirror” particles are expected
to gravitate in the same way as the usual ones. We argue that mirror QCD (mQCD) sector,
if exists, should affect the cosmological expansion, in particular, via an extra non-trivial
“mirror gluon” contribution into the ground state energy of the universe. Below, we will
demonstrate that under certain conditions the mirror gluon condensate can contribute to
the energy density of the universe with positive sign and thus may, in principle, eliminate
the negative QCD vacuum effect yielding a vanishingly small CC term. Attributing the
positive vacuum energy contribution to the mQCD sector non-interacting with quarks and
gluons in ordinary QCD, one may therefore resolve the issue of why such a positive-valued
condensate energy density does not emerge in QCD hadron physics and affects the CC-term
only. Then the observed CC can, in principle, be formed as a remnant of the gluon con-
densate cancellation in expanding universe (e.g. due to an uncompensated quantum gravity
correction to the QCD ground state energy) [9], which appears to be remarkably consistent
with the observed CC and with the Zeldovich scaling relation [38]. The exact compensation
of the QCD vacuum effect by means of the mirror gluon condensate is therefore the central
point to the observable smallness of the CC.

II. QCD AND MIRROR QCD VACUA COMPENSATION

The condensate in QCD is formed by the contributions of gluon and quark non-
perturbative quantum fluctuations

ǫQCD = ǫg + ǫq ≃ −(5 ± 1)× 109 MeV4 , ǫq =
1

4
〈0|muūu+mdd̄d+mss̄s|0〉 . (2.1)

Usually, the dominant gluon contribution is given by means of the trace anomaly relation
in QCD

ǫg ≡ 1

4
〈0|T µ,g

µ |0〉 , T µ,g
µ =

β(ḡ2s)

2
F a
µνF

µν
a , (2.2)

which to one-loop order reads [1, 2]

ǫg = − b

32
〈0|αs

π
F a
µνF

µν
a |0〉 , αs =

ḡ2s
4π

, (2.3)

where b = 9 is the first (one-loop) coefficient of the negative perturbative β-function in
SU(3) gluodynamics with three light flavors

β(ḡ2s) = − bḡ2s
16π2

< 0 , ḡ2s =
16π2

b ln(Q2/Λ2
QCD)

, (2.4)
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with ΛQCD being the QCD scale parameter (the normalization of β corresponds to Ref. [39]).
The formation of the chromomagnetic gluon condensate 〈F 2〉 > 0 is typically considered at
characteristic momentum scales µg inverse to the correlation length lg, i.e. µg ∼ l−1

g ≃ 1.2
GeV [1, 2], where the perturbative QCD still provides a realistic estimate. This validates
the use of one-loop approximated expression (2.3).

One would like to explain why such a big negative contribution (2.1), which is responsible
for a variety of well-known phenomena in hadron physics and is rather unique for QCD, does
not affect the cosmological expansion at late times. Provided that the observed CC-term
density

ǫCC ≃ 3× 10−35MeV4 , (2.5)

is tiny compared to the QCD vacuum density (2.3), the latter should be almost totally
eliminated during the QCD phase transition epoch. Which mechanism could be responsible
for that?

A mirror copy of QCD may generate a similar gluon contribution to the trace anomaly
proportional to the corresponding β-function in mQCD,

ǫmQCD
gluon ≡ 1

4
〈0|T µ,mQCD

µ |0〉 ∝ β(ḡ2) . (2.6)

In mQCD framework mirror quarks can be much heavier than in ordinary QCD [35]. Ap-
plying the idea, that mQCD is similar in main features to usual QCD, this means, that
in mQCD the vacuum is formed only by mirror gluon contribution with pure gluonic β-
function, as long as the heavy quark condensates [40] are compensated by quark part of
β-function, i.e.

ǫmQCD = ǫmQCD
gluon . (2.7)

A possible cancellation of QCD and mQCD vacuum may ensure a required smallness of the
observable CC density

ǫQCD ≃ −ǫmQCD , (2.8)

which means that the corresponding mirror gluon condensate should provide a positive
contribution to the vacuum density, i.e. ǫmQCD > 0. We suppose, that mQCD gluon
condensate can compensate both gluon and quark condensates of usual QCD.

Adopting the traditional hypothesis that the mQCD sector of mirror quarks and gluons
is confined but is not (or very weakly) interacting with the observed SM sectors [37] and
considering only chromomagnetic condensates, the compensation condition (2.8) can be
satisfied if and only if the mQCD β-function is positive, i.e.

ǫmQCD > 0 , 〈F 2
mQCD〉 > 0 , β(ḡ2) > 0 , (2.9)

which is not realized in the perturbative mQCD regime due to Eq. (2.4). It is, however,
possible to achieve the positivity of the non-perturbative β-function provided that at the
characteristic scale of the QCD gluon condensate formation, µg, the mQCD sector is in
deeply non-perturbative regime. The latter condition can be satisfied if the mQCD scale
parameter is large, i.e.

ΛmQCD ≫ µg ≃ 1.2 GeV , (2.10)
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such that the mirror gluon condensate would be in deeply non-perturbative regime by the
moment in the cosmological evolution when its density gets precisely cancelled with the QCD
contribution. Note that the compensation conditions for the QCD and mQCD contributions
(2.8) and (2.9), if indeed realized in nature, may be one of the most important implications of
the mirror QCD in Cosmology yielding a vanishing CC-term and thus providing a dynamical
way to resolve the CC problem.

Can the sign of the β-function in mQCD become positive in the non-perturbative regime?
In order to answer this question, one has to employ a proper formalism which extends the
effective action approach in a gauge theory beyond the perturbativity domain. Indeed, the
compensation (2.8) emerges as a long-distance phenomenon and thus should hold beyond
the PT.

III. EFFECTIVE YANG-MILLS THEORY IN EXPANDING UNIVERSE

The effective action of the quantum YM gauge SU(N)(N = 2, 3, . . . ) theory consistently
accounting for the trace anomaly and properly generalised to the FLRW background reads
[41, 42] (see also Ref. [10])

Seff [A] =

∫

Leff

√
−gd4x , Leff =

J

4ḡ2(J)
, J = − F2

√−g
, F2 ≡ Fa

µνFµν
a ,

g ≡ det(gµν) , gµν = a(η)2diag(1, −1, −1, −1) , t =

∫

a(η)dη , (3.1)

where the YM field and the corresponding stress tensor are defined as usual:

Aa
µ ≡ ḡ Aa

µ , Fa
µν ≡ ḡ F a

µν , F a
µν = ∂µA

a
ν − ∂νA

a
µ + ḡ fabcAb

µA
c
ν

with internal (in adjoint representation) a, b, c = 1, . . . N2 − 1 and Lorentz µ, ν = 0, 1, 2, 3
indices and the gauge coupling ḡ = ḡ(J) satisfying the RG evolution equation [41, 42]

2J
dḡ2

dJ
= ḡ2 β(ḡ2) . (3.2)

Depending on the sign of the invariant J , one distinguishes the chromoelectric J > 0 and
chromomagnetic J < 0 YM fields.

The effective YM equation of motion in a non-trivial background metric reads

(

δab√−g
∂ν
√−g − fabcAc

ν

)[ Fµν
b

ḡ2
√−g

(

1− 1

2
β
(

ḡ2
)

)

]

= 0 . (3.3)

and can be employed beyond the PT as long as the non-perturbative β-function is known.
Remarkably enough, this equation has a simple manifestly non-perturbative ground-state
solution with positive β-function

β
(

ḡ2(J)
)

= 2 , (3.4)

which is a complete analog of similar solution (see Ref. [42], Eqs. (13) and (17)) found
in the Euclidian case with the negative coupling and the β-function corresponding to the
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ferromagnetic vacuum. It is also a non-perturbative analog of the perturbative solution [5,
29] eliminating the traceless part of the energy-momentum tensor

T ν
µ =

1

ḡ2

[

1− 1

2
β(ḡ2)

](

−
Fa

µλFνλ
a√−g

− 1

4
δνµ J

)

−
δνµβ(ḡ

2)

8ḡ2
J ,

which then takes the following form

T ν
µ,0 = − J

4ḡ2(J)
δνµ . (3.5)

It is important to point out, that the equations (3.4-3.5) were obtained in the pure YM
case when the interaction with other fields can be neglected. In particular, we neglect
the mQCD quark current in the right hand side of Eq. (3.3). Let us also stress that we
consider the effective YM Lagrangian (3.1) and energy-momentum tensor (3.5) as a classical
model [42] which possesses well-known properties of the full quantum theory such as (i) local
gauge invariance, (ii) RG evolution and asymptotic freedom, (iii) correct quantum vacuum
configurations, and (iv) trace anomaly given by the last term in Eq. (3.5). These provide a
sufficient motivation and physics interest in cosmological aspects of the considering effective
model.

As the solution (3.4) leads to the energy-momentum tensor of vacuum type (3.5), it
immediately follows from the Friedmann equations that the corresponding energy density is
constant

− J

4ḡ2(J)
= const , (3.6)

thus, the contribution of the YM fields has a cosmological constant form. In particular, this
can be realised if J = const. Indeed, the solution (3.4) fixes the invariant J to its constant
initial value

J(t) ≡ J(t = 0) = J0 . (3.7)

Such solutions were also considered in Refs. [5, 29, 42] in connection with the spontaneous
vacuum magnetisation and in the domain concept of the QCD vacuum [43] (see also the
recent paper [44] and references therein).

Further, we will apply the solution (3.4) and (3.7) to the the mQCD theory in the
non-perturbative regime. The energy-momentum tensor in this case becomes constant as
expected

T ν∗
µ = ǫmQCDδνµ , ǫmQCD ≡ −JmQCD

0

4ḡ20
, (3.8)

where ḡ20 = ḡ2(J0). The coupling ḡ2(J) touches the linear function f(J) = ḡ20 · (J/J0) at the
point J0 (indeed, it has the same value and derivative). And vice versa, if ḡ2(J) touches

const · J at some point J0, then
dḡ2

dJ
|J=J0 =

ḡ2
0

J0
, which means that Eq. (3.4) is satisfied at

J0. Indeed, the existence of such a contact point is a necessary and sufficient condition for
the solution (3.4) with fixed J = J0. This allows us to constrain generic non-perturbative
behavior of the corresponding ḡ2(J). An illustration of the corresponding infrared behavior

6



Β = 0

Β = 2

g2 ~ -J

PT  

0 5 10 15 20 25 30

0

5

10

15

-J�L4
mQCD

g2

FIG. 1: An example of the non-perturbative mQCD coupling constant ḡ2 = ḡ2(J) behavior as a

function of J in consistency with the non-perturbative solution found in Eq. (3.4).

of the mQCD coupling in consistency with both the non-perturbative asymptotics for the
β-function (3.4) and the conventional perturbative regime of asymptotic freedom (2.4) is
shown in Fig. 1. A desirable non-monotonic shape of the coupling was earlier discussed in
the case of usual QCD [45, 46].

From Eq. (3.6) one notices that the mQCD gauge field give a constant vacuum contribu-
tion to the energy-momentum tensor in the Einstein equations. Since the QCD and mQCD
contributions to the ground-state energy density have opposite signs there is a compelling
possibility that they can, in principle, cancel each other at some moment in the cosmological
history provided that

ǫmQCD → −ǫQCD (3.9)

in the infrared regime of mQCD. Keeping ḡ20 > 0 in both QCD and mQCD, we arrive at the
following form of the compensation condition (2.8)

ǫQCD ≃ JmQCD
0

4ḡ20
< 0 , JmQCD

0 < 0 , (3.10)

which means, that mQCD condensate has to be chromomagnetic.
After such a compensation is achieved, only a very small ǫCC contribution, which could be

formed by other vacuum sources ǫvac and possibly by a non-compensated part of mQCD and
QCD vacua contributions ǫQCD+ ǫmQCD, remains. Of course, a fine-tuning is unavoidable to
match the observations, although would not be entirely unreasonable due to the same order
magnitude of the QCD and mQCD contributions. Such a vacua alignment, if realised in
Nature, can be suggested e.g. by their common Anthropic origins [47]. Then the standard
Friedmann equation in the non-stationary FLRW universe

3

κ

(a′)2

a4
= ǫmat + ǫCC , ǫCC ≡ ǫQCD + ǫmQCD + ǫvac , (3.11)

determines the cosmological evolution, a = a(η), driven by the gluon and mirror gluon
condensate densities (compensating each other exactly or in part), the matter contribution,
ǫmat, and other possible vacua contributions of a different kind, ǫvac.
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Let us notice for completeness, that Eq. (3.4) allows for a more specific solution apart
from constant fields (3.7). This another solution appears, if the non-perturbative β-function
becomes constant satisfying Eq. (3.4) in some finite domain which corresponds to the strong
coupling regime (saturated behaviour). In this case, Eq. (3.4) can be substituted into the
RG equation

d ln ḡ2

d ln
(

− J/(ξΛmQCD)4
) =

1

2
β
(

ḡ2
)

= 1 , (3.12)

(ξ is a numerical parameter) which implies that the mQCD coupling is proportional to J in
the infrared limit, e.g.

ḡ2(J) = ḡ20
J

J0

, ḡ20 ≡ ḡ2(J0) . (3.13)

Such behaviour clearly guarantees a constant vacuum energy (see Eq. (3.5)) as well as a
possibility for the QCD/mQCD vacua compensation. According to Eq. (3.13) the gauge
coupling squared has to approach the linear ḡ2 ∼ J asymptotics in the non-perturbative
regime (note, for the constant field solution (3.7) ḡ2 has to satisfy a much less restrictive
constraint and just touches the linear asymptotics ḡ2 ∼ J at a fixed point).

So, within the QCD/mQCD vacua compensation hypothesis, both vacua subsystems
should be generated in early universe at close (but different) energy scales and then get
compensated during the cosmological QCD phase transition epoch. As was shown above,
this can be realised in a deeply non-perturbative regime for the mirror gluon condensate
which asymptotically acquires the same absolute value of energy density and opposite sign
compared to the QCD gluon one, such that they almost exactly eliminate each other at
macroscopically large space-time separations.

IV. SUMMARY

In this Letter, we have considered cosmological consequences of a possible exact cancella-
tion of vacuum energies between QCD and a mirror high-scale copy of QCD in the confined
regime. One of the most important implications of such a cancellation is a possibility for the
dynamical elimination of the QCD vacuum density contribution to the cosmological constant
resulting in its observed smallness (provided that all perturbative vacua are eliminated by
some other mechanism, see e.g. Ref. [24–26]). By an appropriate fine-tuning of QCD and
mirror QCD vacua parameters, the compensation is provided by a partial non-perturbative
solution of the Yang-Mills equation of motion corresponding to a positive constant β-function
in deeply infrared regime of mirror QCD. Such a dynamical vacua compensation due to dif-
ferent signs of β-functions in QCD and mirror QCD can be yet another implication of the
Anthropic Principle [47] realised for QCD and mirror gluon condensates.
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[2] T. Schäfer and E. V. Shuryak, Rev. Mod. Phys. 70, 323 (1998)

[3] D. Diakonov, Prog. Part. Nucl. Phys. 51, 173 (2003).

[4] D. Diakonov, Nucl. Phys. Proc. Suppl. 195, 5 (2009).

[5] Y. Zhang, Phys. Lett. B 340 (1994) 18.

[6] A. Maleknejad and M. M. Sheikh-Jabbari, Phys. Rev. D 84, 043515 (2011).

[7] A. R. Zhitnitsky, Phys. Rev. D 89, no. 6, 063529 (2014).

[8] E. C. Thomas, F. R. Urban and A. R. Zhitnitsky, JHEP 0908, 043 (2009).

[9] R. Pasechnik, V. Beylin and G. Vereshkov, JCAP 1306, 011 (2013) [arXiv:1302.6456 [gr-qc]].

[10] P. Don, A. Marcian, Y. Zhang and C. Antolini, Phys. Rev. D 93, no. 4, 043012 (2016)

[arXiv:1509.05824 [gr-qc]].

[11] D. V. Galtsov and M. S. Volkov, Phys. Lett. B 256, 17 (1991).

[12] M. Cavaglia and V. de Alfaro, Mod. Phys. Lett. A 9, 569 (1994).

[13] K. Bamba, S. Nojiri and S. D. Odintsov, Phys. Rev. D 77, 123532 (2008).

[14] E. Elizalde and A. J. Lopez-Revelles, Phys. Rev. D 82, 063504 (2010).

[15] D. V. Gal’tsov and E. A. Davydov, Int. J. Mod. Phys. Conf. Ser. 14, 316 (2012).

[16] E. Elizalde, A. J. Lopez-Revelles, S. D. Odintsov and S. Y. Vernov, Phys. Atom. Nucl. 76,

996 (2013).

[17] E. Komatsu et al. [WMAP Collaboration], Astrophys. J. Suppl. 192, 18 (2011).

[18] P. A. R. Ade et al. [Planck Collaboration], Astron. Astrophys. 571, A16 (2014);

arXiv:1502.01589 [astro-ph.CO].

[19] S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).

[20] F. Wilczek, Phys. Rept. 104, 143 (1984).

[21] R. Pasechnik, Universe 2, no. 1, 4 (2016).

[22] P. Bull et al., Phys. Dark Univ. 12, 56 (2016) [arXiv:1512.05356 [astro-ph.CO]].

[23] J. Sola, J. Phys. Conf. Ser. 453, 012015 (2013).

[24] A. Y. Kamenshchik, A. Tronconi, G. P. Vacca and G. Venturi, Phys. Rev. D 75 (2007) 083514

doi:10.1103/PhysRevD.75.083514 [hep-th/0612206].

[25] G. L. Alberghi, A. Y. Kamenshchik, A. Tronconi, G. P. Vacca and G. Venturi, JETP Lett.

88 (2008) 705. doi:10.1134/S002136400823001X

[26] A. Y. Kamenshchik, A. A. Starobinsky, A. Tronconi, G. P. Vacca and G. Venturi,

arXiv:1604.02371 [hep-ph].

[27] P. Boucaud et al., Phys. Rev. D 66, 034504 (2002) [hep-ph/0203119].

[28] M. Hutter, hep-ph/0107098.

[29] R. Pasechnik, V. Beylin and G. Vereshkov, Phys. Rev. D 88 (2013) 2, 023509 [arXiv:1302.5934

[gr-qc]].

[30] E. J. Copeland, M. Sami and S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006)

[hep-th/0603057].

[31] A. D. Dolgov and M. Kawasaki, astro-ph/0307442;

A. D. Dolgov and M. Kawasaki, astro-ph/0310822.

[32] M. J. Strassler and K. M. Zurek, Phys. Lett. B 651, 374 (2007)

doi:10.1016/j.physletb.2007.06.055 [hep-ph/0604261].

[33] Z. Chacko, H. S. Goh and R. Harnik, Phys. Rev. Lett. 96, 231802 (2006) [hep-ph/0506256].

[34] G. Burdman, Z. Chacko, H. S. Goh and R. Harnik, JHEP 0702, 009 (2007) [hep-ph/0609152].

[35] H. Cai, H. C. Cheng and J. Terning, JHEP 0905, 045 (2009) [arXiv:0812.0843 [hep-ph]].

[36] R. Barbieri, T. Gregoire and L. J. Hall, hep-ph/0509242.

[37] Z. Chacko, D. Curtin and C. B. Verhaaren, Phys. Rev. D 94, no. 1, 011504 (2016)

9

http://arxiv.org/abs/1302.6456
http://arxiv.org/abs/1509.05824
http://arxiv.org/abs/1502.01589
http://arxiv.org/abs/1512.05356
http://arxiv.org/abs/hep-th/0612206
http://arxiv.org/abs/1604.02371
http://arxiv.org/abs/hep-ph/0203119
http://arxiv.org/abs/hep-ph/0107098
http://arxiv.org/abs/1302.5934
http://arxiv.org/abs/hep-th/0603057
http://arxiv.org/abs/astro-ph/0307442
http://arxiv.org/abs/astro-ph/0310822
http://arxiv.org/abs/hep-ph/0604261
http://arxiv.org/abs/hep-ph/0506256
http://arxiv.org/abs/hep-ph/0609152
http://arxiv.org/abs/0812.0843
http://arxiv.org/abs/hep-ph/0509242


doi:10.1103/PhysRevD.94.011504 [arXiv:1512.05782 [hep-ph]].

[38] Y. B. Zeldovich, JETP Lett. 6, 316 (1967) [Pisma Zh. Eksp. Teor. Fiz. 6, 883 (1967)].

[39] M. B. Voloshin, K. A. Ter-Martirosyan, Theory of gauge interactions of elementary particles,

Moscow, Energoatomizdat (1984).

[40] S. C. Generalis and D. J. Broadhurst, Phys. Lett. B 139 (1984) 85. doi:10.1016/0370-

2693(84)90040-6

[41] S. G. Matinyan and G. K. Savvidy, Nucl. Phys. B 134, 539 (1978).

[42] H. Pagels and E. Tomboulis, Nucl. Phys. B 143, 485 (1978).

[43] O. Nachtmann and A. Reiter, Z. Phys. C 24 (1984) 283. doi:10.1007/BF01410367

[44] S. N. Nedelko and V. E. Voronin, Phys. Rev. D 93 (2016) no.9, 094010

doi:10.1103/PhysRevD.93.094010 [arXiv:1603.01447 [hep-ph]].

[45] M. Baldicchi, A. V. Nesterenko, G. M. Prosperi, D. V. Shirkov and C. Simolo, Phys. Rev.

Lett. 99, 242001 (2007) doi:10.1103/PhysRevLett.99.242001 [arXiv:0705.0329 [hep-ph]].

[46] D. Shirkov, arXiv:0807.1404 [hep-ph].

[47] S. Weinberg, Phys. Rev. Lett. 59 (1987) 2607. doi:10.1103/PhysRevLett.59.2607

10

http://arxiv.org/abs/1512.05782
http://arxiv.org/abs/1603.01447
http://arxiv.org/abs/0705.0329
http://arxiv.org/abs/0807.1404

	I Introduction
	II QCD and mirror QCD vacua compensation
	III Effective Yang-Mills theory in expanding universe
	IV Summary
	 References

