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We develop a model to study tetraquark production in hadronic collisions. We focus on

double parton scattering and formulate a version of the color evaporation model for the

production of the X(3872) and of the T4c tetraquark, a state composed by the cc̄cc̄ quarks.

We find that the production cross section grows rapidly with the collision energy
√
s and

make predictions for the forthcoming higher energy data of the LHC.

I. INTRODUCTION

A. Production mechanism

Over the last years the existence of exotic hadrons has been firmly established [1, 2] and now the

next step is to determine their structure. Among the proposed configurations the meson molecule

and the tetraquark are the most often discussed. So far almost all the experimental information

about these states comes from their production in B decays. The production of exotic particles

in proton proton collisions is one of the most promising testing grounds for our ideas about the

structure of the new states. It has been shown [1] that it is extremely difficult to produce molecules

in p p collisions. In the molecular approach the estimated cross section for X(3872) production is

two orders of magnitude smaller than the measured one. The present challenge for theorists is to

show that these data can be explained by the tetraquark model. To the best of our knowledge, this

has not been done so far. In this work we give a step in this direction, considering the production

of the X(3872) and of the T4c, a state composed by two charm quark pairs: cc̄cc̄.

http://arxiv.org/abs/1511.05209v1
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In recent high energy collisions at the LHC, it became relatively easy to produce [3, 4] four charm

quarks (cc̄cc̄) in the same event. Events with four heavy quarks can be treated as a particular case

of α2
s correction to the standard single gluon-gluon scattering, in which an extra cc̄ pair is produced,

i.e., the process gg → cc̄cc̄. This is usually called single parton scattering (SPS). Another possible

way to produce cc̄cc̄ is by two independent leading order gluon-gluon scatterings, i.e. two times the

reaction gg → cc̄. This is usually called double parton scattering (DPS) [5? ]. In fact, apart from

cc̄cc̄, DPS events may generate many other different final states, such as four jets, a c− c̄ pair plus

two jets, etc. For our purposes, the other relevant DPS process is the production of a c − c̄ pair

plus a light quark pair, q− q̄, which will hadronize and form the X(3872). Since DPS events are in

the realm of perturbative physics, the light quark pair must be produced with large invariant mass

and the final state X(3872) will carry large transverse momentum. This seems to be appropriate

to describe the CMS data [7], where the X(3872) was observed with a transverse momentum lying

in the range 10 ≤ pT ≤ 25 GeV. In [8, 9] it has been shown that DPS charm production is already

comparable to SPS production at LHC energies. DPS grows faster with the energy because it is

proportional to g(x, µ2)4 while SPS is proportional to g(x, µ2)2. Here g(x, µ2) is the gluon density

in the proton as a function of the gluon fractional momentum x and of the scale µ and it grows

quickly with increasing collision energies. In the present work we shall consider the DPS events

with the production of the two cc̄ pairs and also with a cc̄ and a light quark qq̄ pair.

Once we have generated all the quarks and antiquarks needed to form the X(3872) or the T4c in

DPS events, we need to bind them together. To this end we shall use the main ideas of the Color

Evaporation Model (CEM) [10, 11] of charmonium production, where the c − c̄ is “kinematically

bound”, i.e., the charm pair sticks together because it does not have an invariant mass large enough

to produce anything else. We shall use the CEM ideas to study T4c and X(3872) production in

DPS events. In the CEM formalism one parton from the hadron target scatters with one parton

from the hadron projectile forming a charmonium state, which can absorb (emit) additional gluons

from (to) the hadronic color field to become color neutral. This is the usual (SPS) cc̄ production.

At high energies the gluon density in the proton is much bigger than the sea quark density and

hence, in what follows, we shall consider particle production only from gluon-gluon collisions. Now

we are going to extend the CEM to the case where two gluons from the hadron target scatter

independently with two gluons from the hadron projectile as depicted in Fig. 1, where we show

DPS production of T4c. In the figure two gluons collide and form a cc̄ state with mass M12, while

other two gluons collide and form a second cc̄ state with mass M34. The two objects bind to each

other forming the T4c. Additional gluon exchanges with the environment are not shown in the
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FIG. 1: The gluons with odd (even) label come from the upper (lower) hadron, and carry momentum

fraction xi. The “gluon 1” scatters with “gluon 2”, making the state M12. An analogous process occurs

with gluons 3 and 4. Finally M12 and M34 merge and form the T4c with mass M .

figure. Replacing one cc̄ pair by a light quark pair, qq̄, the diagram would describe the production

of X(3872).

The main difference between a tetraquark and a meson molecule is that the former is compact

and the interaction between the constituents occurs through color exchange forces whereas the

latter is an extended object and the interaction between its constituents happens through meson

exchange forces. In what was said above no explicit mention to size or color is made. However

when we speak about the initial gluon fusion and about the final color neutralization through gluon

emission or absorption it is understood that all this must happen within the confinement scale ≃ 1

fm. For this reason we believe that our model is suitable to describe tetraquark production.

Although not explicitly excluded, it seems very unlikely that the clusters with masses M12 and

M34 will form color singlets interacting through meson exchange.

B. Kinematics

Working with the usual CEM one-dimensional kinematics, the rapidities of the objects M12 and

M34 are respectively:

y12 =
1

2
ln
x1
x2

and y34 =
1

2
ln
x3
x4

(1)
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and their invariant masses are

M12 =
√
x1 x2 s and M34 =

√
x3 x4 s . (2)

In terms of these variables and in the low pT regime, the invariant mass of the cc̄cc̄ system is then

given by:

M2 = M2
12 + M2

34 + 2M12M34 cosh(y12 − y34) . (3)

The cosh function grows very rapidly with the argument and hence even a modest rapidity differ-

ence between the two clusters with M12 and M34 will significantly increase the value of M . We

will then assume that both clusters move with equal rapidity, i.e. y12 = y34, and become bound to

each other, forming a system with mass:

M = M12 + M34 . (4)

Finally, in order to produce the final tetraquark state with right mass, MT , the cluster with mass

M emits or absorbs gluons carrying an energy ∆, which will be discussed below. We have thus:

M ±∆ = MT . (5)

A remarkable difference between the standard CEM for charmonium production and the model

developed here is in the role played by the limits of the integral over the squared invariant mass

M2. In the case of the usual J/ψ production it goes from (2mc)
2 to (2mD)

2. This ensures that

the c − c̄ can never decay into open charm, not forming the charmonium state, because it does

not have enough invariant mass. The case of the tetraquark X(3872) is different. Suppose, for

example, that we have the four-quark system with an invariant mass of 3740 MeV. While this

system can only form the X resonance by absorbing some gluons (carrying energy ∆) from the

target or from the projectile, it has sufficient mass to decay immediately into a D+D− pair and

not form the resonance. Moreover, since the energy ∆ is carried by an undefined number of gluons,

this decay is not hindered by parity (or charge conjugation) conservation. Therefore, in our case,

the integration over M2 must be changed becoming more restrictive:

∫ (2mD)2

(2mc)2
dM2 →

∫ (MT+∆)2

(MT−∆)2
dM2 (6)

where the left side refers to the usual CEM and the right side refers to tetraquark states. We will

use this restriction in Sec. III.
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II. TETRAQUARK PRODUCTION

A. T4c: the all-charm tetraquark

The T4c state was first discussed long time ago by Iwasaky [12]. Some years later, using a

variational method with gaussian trial radial wave functions and two-body potentials based on the

exchange of color octets between quarks, Ader et al. [13] obtained non-stable cc̄cc̄ states. However,

using a potential derived from the MIT bag model in the Born-Oppenheimer approximation the

same authors concluded that the cc̄cc̄ state was bound by 35 MeV. Heller and Tjon [14] considered

also the MIT bag model improving the Born-Oppenheimer approximation with a correct treatment

of the kinetic energy and found non-stable cc̄cc̄ states. In Ref. [15] cc̄cc̄ states were analyzed

in the framework of a chromomagnetic model, where only a constant hyperfine potential, not

depending on radial coordinates, was retained. With these assumptions no bound QQ̄QQ̄ states

were found. A similar conclusion was obtained in Ref. [16] using the Bhaduri potential and

solving variationally the four-body problem in a harmonic oscillator basis. More recently, with the

revival of charmonium spectroscopy, Lloyd and Vary [17] investigated the four-body cc̄cc̄ system

using a nonrelativistic hamiltonian inspired by the one-gluon exchange potential, diagonalizing

the hamiltonian in a harmonic oscillator basis, obtaining several close-lying bound states. They

found that deeply bound (≃ 100 MeV) states may exist with masses around 6 GeV. In Ref.

[18] the existence of cc̄cc̄ states was addressed in the framework of the hyperspherical harmonic

formalism. The results suggested the possible existence of three four-quark bound states with

quantum numbers 0+−, 2+− and 2++ and masses of the order of 6.50, 6.65, and 6.22 GeV. The

two states with exotic quantum numbers, clearly below their corresponding two-meson threshold,

should present narrow widths and, if produced, may be easily detected. More recently, using the

Bethe-Salpeter approach, the authors of Ref. [19] found an all-charm tetraquark with JPC = 0++

and mass MT4c
= 5.3 ± 0.5 GeV. This mass is considerably lower than the 6.0 GeV obtained in

the previous model calculations [12, 17]. It is also much lower than the 2ηc threshold. Potential

decay channels into D mesons and pairs of light mesons necessarily involve internal gluon lines.

The resulting decay width may therefore be rather small. On the other hand, preliminary lattice

QCD calculations [20, 21] seem to disfavor the existence of a deeply bound cc̄cc̄ state, being more

compatible with a loosely bound 2ηc molecular state. In the works [22, 23] T4c production was

studied in SPS events.
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B. The production cross section

The cross section of the process shown in Fig. 1 can be calculated with the schematic DPS

“pocket” formula:

σDPS ∝ σ12SPSσ
34
SPS

σeff
(7)

where σeff ≃ 15 mb is a constant extracted from data analysis and σSPS is the standard QCD

parton model formula, i. e., the convolution of parton densities with partonic cross sections. To

be more precise we expand the above formula showing the kinematical constraints introduced to

study tetraquark production. It reads:

σDPS =
FT4c

σeff

[
∫ 1

0
dx1

∫ 1

0
dx2 g(x1, µ

2) g(x2, µ
2)σg1g2→cc̄

]

×
[
∫ 1

0
dx3

∫ 1

0
dx4 g(x3, µ

2) g(x4, µ
2)σg3g4→cc̄

]

× Θ(1− x1 − x3) Θ(1− x2 − x4) Θ(M2
12 − 4m2

c) Θ(M2
34 − 4m2

c)

× δ(y34 − y12) (8)

where g(x, µ2) is the gluon distribution in the proton with the gluon fractional momentum x and at

the factorization scale µ2 and σgg→cc̄ is the gg → cc̄ elementary cross-section. The step functions

Θ(1 − x1 − x3) and Θ(1 − x2 − x4) enforce momentum conservation in the projectile and in the

target. The step functions Θ(M2
12−4m2

c) and Θ(M2
34−4m2

c) guarantee that the invariant masses of

the gluon pairs 12 and 34 are large enough to produce two charm quark pairs. The delta function

implements the “binding condition” and FT4c
is a constant, analogous to the one appearing in the

CEM formula, which represents the probability of the four-quark system to evolve to a particular

tetraquark state.

In the above formula, all the variables depend on the momentum fractions x1 ... x4. Because

of the delta function, we know that the two clusters shown in Fig. 1 are “flying together” and that

they form a system with mass M =M12+M34, which can take any value. In order to improve our

kinematical description of this bound state, we can impose constraints on the values of M , such

as (6). This can be best done rewritting (8) and changing variables from x1, x2, x3 and x4 to y12,
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y34, M12 and M34. We obtain:

σDPS =
FT4c

σeff

[

1

s

∫

dy12

∫

dM2
12 g(x̄1, µ

2) g(x̄2, µ
2)σg1g2→cc̄

]

×
[

1

s

∫

dy34

∫

dM2
34 g(x̄3, µ

2) g(x̄4, µ
2)σg3g4→cc̄

]

× Θ(1− x̄1 − x̄3) Θ(1− x̄2 − x̄4) Θ(M2
12 − 4m2

c) Θ(M2
34 − 4m2

c)

× δ(y34 − y12) (9)

where

x̄1 =
M12√
s
ey12 , x̄2 =

M12√
s
e−y12 , x̄3 =

M34√
s
ey34 , x̄4 =

M34√
s
e−y34 (10)

and consequently

Θ(1− x̄1− x̄3) = Θ(1−M12√
s
ey12 −M34√

s
ey34) , Θ(1− x̄2− x̄4) = Θ(1−M12√

s
e−y12 −M34√

s
e−y34)

(11)

From the above expressions it is easy to see that when y12 = y34 = y, then (4) holds and the theta

functions give lower and upper limits for the integration in y:

− ln

√
s

M
≤ y ≤ ln

√
s

M
(12)

The upper limit of M12 and M34 can be fixed imposing constraints on their sum, M . In the case of

the X(3872) we already know the mass of the state that we want to produce. In principle we could

just use (4) with a fixed value ofM . However, following the spirit of the CEM, we will assume that

when the system with mass M =M12 +M34 goes to the final state with mass MT it can absorb or

emit soft gluons to neutralize color. These gluons carry an energy going from almost zero to the

QCD scale, given by ∆ = O(ΛQCD). Then, from (4) and (5) we have:

Mmin =Mmin
12 +Mmin

34 =MT −∆ (13)

and

Mmax =Mmax
12 +Mmax

34 =MT +∆ (14)

From these equations we can see that, knowing the mass of the tetraquark state and fixing the

amount of energy which can be exchanged in the formation of the final state, we constrain the limits

in the integrations over M12 and M34. In the symmetric case of T4c production Mmin
12 = Mmin

34 ,

Mmax
12 =Mmax

34 , (13) and (14) completely fix these limits. In the case of the X(3872), we may have

different choices for Mmin
12 (Mmax

12 ) and Mmin
34 (Mmax

34 ) but they will be correlated.
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III. NUMERICAL RESULTS AND DISCUSSION

A. T4c

As mentioned in the introduction we take the production cross section of the T4c as a baseline

because it is heavy, and hence treatable in pQCD, and also to make some contact with the pro-

duction of cc̄cc̄ in DPS. In this subsection we discuss the numerical results obtained for T4c. Then

in the following subsection, after only a few changes we calculate the cross section for X(3872)

production.

We now evaluate equation (9) replacing g(x, µ2) by the MRST gluon distribution [24] and σgg→cc̄

by the standard leading order QCD result [11]:

σgg→cc̄ =
πα2

s(m
2)

3m2

{

(1 +
4m2

c

m2
+
m4

c

m4
) ln[

1 + β

1− β
] − 1

4
(7 +

31m2
c

m2
)β

}

(15)

with

β = [1− 4m2
c

m2
]1/2

where m2 is equal to M2
12 or M2

34. A difficulty in our calculation is the uncertainty in the normal-

ization of the cross section. Whereas in the case of charmonium production in the CEM we have

experimental information, which can be used to fix the nonperturbative constant FH , in the case

of the T4c nothing is known. For the time being we can only try to make a simple estimate.

In the usual CEM it is assumed that the nonperturbative probability for the QQ̄ pair to evolve

into a quarkonium state H is given by a constant FH that is energy-momentum and process in-

dependent. Once FH has been fixed by comparison with the measured total cross section for the

production of the quarkonium H at one given energy, the CEM can predict, with no additional free

parameters, the energy dependence of the production cross section and the momentum distribution

of the produced quarkonium. Following the CEM strategy we shall adjust σT4c
connecting it to the

experimentally measured cross section of X(3872) production at one single energy and then make

predictions for higher energies.

We know that the production cross section of T4c must be smaller than the one for X(3872)

production and the latter has been measured by the CMS collaboration [7] at
√
s = 7 TeV.

Moreover, assuming that the binding mechanism is the same, the only difference is that we must

replace the light quark pair (which is in the X(3872)) by the cc̄ pair, which is much more difficult to

produce. Therefore, in order to estimate the cross section for producing the T4c, we must multiply
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TABLE I: X(3872) and T4c production cross sections at
√
s = 7 TeV and

√
s = 14 TeV.

Energy (TeV) σcc̄ (mb) σinel (mb) σX (nb) σT4c
(nb)

7 8.5 [26] 73.2 [25] 30.0 [7] 3.6 ± 2.5

14 44.6 ± 17.7 7.0 ± 4.8

the X(3872) production cross section, σX , by a penalty factor:

σT4c
=
σcc̄cc̄
σcc̄qq̄

σX ≃ σcc̄ σcc̄
σcc̄ σqq̄

σX ≃ σcc̄
σinel

≃ 0.12σX (16)

where σcc̄cc̄ and σcc̄qq̄ are the cross sections for the production of cc̄cc̄ and cc̄qq̄ respectively. These

cross sections can be measured in double parton scattering events. In the above expression, after

using the factorization hypothesis, σcc̄ cancels out and the ratio σcc̄/σqq̄ ≃ σcc̄/σinel can be inferred

from data [25, 26], which at 7 TeV yield ≈ 0.12. All the required numbers are collected in Table

I. Finally, using the value of σX ≃ 30 nb [7], we have:

σT4c
(
√
s = 7TeV) ≃ (3.6 ± 2.5) nb (17)

Having fixed the numbers we plot the cross section for T4c production as a function of the energy

in Fig. 2. In order to obtain an estimate of the theoretical error we vary the parameters trying to

scan the most relevant region in the parameter space. We choose ∆ ≈ ΛQCD ≈ 200 MeV and we

assume that the T4c mass is given by MT4c
= 5.4 GeV, as obtained in Ref. [19]. With these two

parameters fixed we can choose different values for the charm mass mc. However there is an upper

limit for mc, which cannot be bigger than Mmin
12 /2. Substituting ∆ and MT4c

in Eq. (13) we find

that Mmin
12 = 2.6 GeV, consequently the maximum value for mc is mc = 1.3 GeV. In Fig. 2 the

upper line corresponds to mc = 1.2 GeV and the lower line corresponds to mc = 1.3 GeV. The star

in Fig. 2 corresponds to the central value at
√
s = 7 TeV. Here the constant FT4c

was chosen so

as to reproduce (17). Once all the parameters are fixed at
√
s = 7 TeV, the energy dependence of

the cross section is completely determined by the model. In Fig. 2 the cross represents the central

value of our prediction for the energy
√
s = 14 TeV:

σT4c
(
√
s = 14TeV) ≃ (7.0 ± 4.8) nb (18)

The main feature of the curves is the rapid rise with
√
s, which might render the T4c observable

already at 14 TeV. This same fast growing trend was observed in other estimates with DPS [5? ].



10

10
2

10
3

10
4

s
1/2

 (GeV)

10
-3

10
-2

10
-1

10
0

10
1

σ 
(n

b)

m
c
 = 1.2 GeV

m
c
 = 1.3 GeV

FIG. 2: Cross section of T4c production as a function of the energy.

B. X(3872)

We now turn to the production cross section of X(3872). We use the same parton densities

as in the previous subsection and also the elementary cross section for heavy quark production

(15). Note that we use this expression even for light quark production σg3g4→qq̄, which appears

now in the second line of (8) or (9). Since this expression only holds for heavy enough quarks,

its use here is questionable. In spite of this uncertainty, the existing experience in the literature

is encouraging. In [27] the authors used (15) to compute the cross section of strange particle

production and calculated the asymmetries in the production of K+/K−, Λ/Λ̄, ...etc. They have

used the convolution formula of the parton model and have taken the strange quark mass to be

ms ≃ 500 MeV. They could reproduce well the existing data on asymmetries. We will follow this

approach here and take mq = 0.5 GeV, Nf = 2 and ΛQCD = 200 MeV. For these choices we have

typically:

αs =
12π

(33 − 2Nf ) ln(
(2mq)2

Λ2

QCD

)
≃ 0.4 (19)

Although we may expect significant corrections, this number is still small enough for perturbation

theory to make sense. As in the previous subsection, after fixing these parameters and knowing

the tetraquark mass MX = 3872 MeV the only remaining free parameters are the charm mass and

the constant FX . We show our results in Fig. 3, where the upper line corresponds to mc = 1.2

GeV and the lower line corresponds to mc = 1.3 GeV. The constant FX was adjusted so that the

central value of the cross section at
√
s = 7 TeV (shown with a star) corresponds to σX = 30.0 nb.
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With all the numbers fixed at the lower energy the energy dependence is given by the model. At
√
s = 14 TeV, the cross indicates the central value of our prediction:

σX(
√
s = 14TeV) ≃ 44.6 ± 17.7 nb (20)

The error in the number given above is relatively large but, at least we can predicit the order

10
2

10
3

10
4

s
1/2

 (GeV)

10
-1

10
0

10
1

10
2

σ 
(n

b)

m
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m
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FIG. 3: X(3872) production cross section as a function of the energy.

of magnitude of the cross section. As a first estimate with DPS, we think that the result is

satisfactory. The model presented here can be improved in several aspects. Probably the most

relevant one is the prescription to form the resonance, i.e., the hadronization of the multiquark

system. Progress in this direction would also benefit the SPS calculations of this process. Our

prescription, based mostly on the kinematical aspects and using only the rapidities and invariant

masses, is not accurate enough and is the largest source of uncertainties. Work along this line is in

progress. The other sources of uncertainties are, as usual, the choice of parton densities, the choice

of the energy scale at which they are computed, the choice of the scale at which αs is computed,

the choice of ΛQCD, and the charm and light quark masses.

IV. CONCLUSION

We have developed a model for tetraquark production which combines double parton scattering

and the basic ideas of the color evaporation model. We have made predictions for the X(3872)
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production cross section, which may be confronted with the forthcoming LHC data taken at
√
s =

14 TeV.

The results presented above contain some uncertainties: i) they do not include tetraquark pro-

duction in SPS events, which can be larger than the DPS cross section. The calculation of the SPS

cross section requires some fragmentation function which is not known.; ii) the binding mechanism

is probably too simple and insensitive to the quantum numbers of the involved particles; iii) in

the case of X(3872) production, the use of formula (15) for light quark production is questionable.

This problem may be circunvented using the next-to-leading order version of the CEM, in which

the transverse momentum is included. In this case the light quarks can be really light but they

have large pT , rendering plausible the use of the perturbative formula (15), where now instead of

m we would have mT =
√

M2 + p2T .
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