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Abstract. This talk discusses our old work on the hadronic light-by-light contribution to the muon anomalous
magnetic moment and some more recent contributions. I discuss the various contributions starting with pseudo-
scalar meson exchange, the quark- and pion-loop, as well as scalar anda1-exchange. For theπ0-exchange I
point out a possible large enhancement when only connected contributions are included. For the quark-loop
I include some comments about the more recent estimates of this contribution. The pion-loop is discussed in
more detail, in particular I discuss our unpublished work onincluding effects froma1 and the polarizability.
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Figure 1. HLbL
contribution to the muon
g − 2. The crossed blob
indicates the strong
interaction part.

1 Introduction

There were many talk on the muon anomalous magnetic
moment and hadronic contributions to it at this conference.
This manuscript should be read together with those. A
general introduction to the theory of the hadronic contri-
butions to the muon anomalyaµ = (gµ − 2)/2 was given in
the talks by Melnikov [1] and Knecht [2]. The hadronic
light-by-light-contribution (HLbL) shown in Fig. 1 was
discussed in the talks by Procura [3], Cappiello [4], Grey-
nat [5], Nyffeler [6], Lehner [7] and Vanderhaeghen [8].
There were also several talks on the underlying form-
factors, both theoretically and experimentally.

The main reason is the measurement of the muon
anomalous magnetic moment of [9] and the discrepancy
with the satandard model prediction. Reviews of the the-
ory can be found in [10–12] but more references and re-
views can be found in the remainder of this talk and the
talks mentioned above. The main conclusion was that
the present best estimate of the HLbL is (11± 4)× 10−10

[10, 12] or (10.5± 2.6)× 10−10 [11]. The main difference
is an estimate of the errors which is always somewhat sub-
jective.

In this talk I will concentrate on the work done a
long time ago [13–15] as well as some newer work on

ae-mail: bijnens@thep.lu.se

the pion loop. I will also discuss more recent contribu-
tions about the pseudo-scalar exchange and quark-loop.
I do not present a new final overall number but will ar-
gue that a good estimate for the pion-loop contribution is
−(2.0± 0.5)× 10−10.

A short overview of general properties of the underly-
ing four-point functions is Sect. 2 followed by a reminder
of the ENJL model used for a large part of [13–15] in
Sect. 3. Sect. 4 discusses the numerically largest contri-
bution, pseudo-scalar meson exchange. The contribution
with rather large theoretical errors, the quark-loop, is dis-
cussed in Sect. 5. Other leading largeNc exchanges are
scalar, Sect. 6, anda1-exchange, Sect. 7. I spent a large
amount of space on theπ-loop contribution since that is
where I have some new results to present. Details are in
Sect. 8. I present some conclusions and some possible fu-
ture directions in the last section.

2 General properties

The problem is that the integration over photon momenta
p1, p2 in the diagram in Fig. 1 contains both high and low
moimenta and mixed cases. Double counting is thus a seri-
ous issue when using both quark and hadron contributions.
Ref. [16] suggested using chiralp and largeNc counting
to distinguish different contributions. This does not fully
solve the double counting issue but it is a good start. This
suggestion was followed by two groups doing a more or
less full evaluation of the HLbL, the one I was involved
in [13–15] (BPP) and Kinsohita and collaborators [17–19]
(HKS). In fact, these are still the only full calculations that
exist.

The underlying object is the four-point function
Πρναβ(p1, p2, p3) of four electromagnetic vector currents.
In fact what we really need is a derivative w.r.t.p3 at
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p3 = 0,
δΠρναβ(p1, p2, p3)

δp3λ

∣

∣

∣

∣

∣

∣

p3=0

. (1)

Πρναβ(p1, p2, p3) has in general 138 Lorentz structures
which reduces to 43 gauge-invariant structures. Note that
in four dimensions there really are 2 less, 136 and 41 [20].
Of the 138 more general structures 28 [21] actually con-
tribute (improving the 32 estimate of [14]). Each of these
functions depends onp2

1, p
2
2, q

2 and before the derivative
also onp2

3, p1.p3, p2.p3. This should be compared with the
lowest order hadronic vacuum polarization where there is
one function of one variable. There are two groups us-
ing dispersive methods to to establish a link to experiment
as close as possible. These were covered in the talks by
Procura [3] and Vanderhaeghen [8].

After settingp3 → 0 the loop integrals over the pho-
ton momenta is 8 dimensional. Three of these integrations
are trivial and using Gegenbauer polynomial methods two
more can be done [12, 21, 22]. So, after having a model or
a computation ofΠρναβ(p1, p2, p3) there is a triple integral
over p2

1, p
2
2, q

2 left. The components and their derivatives
then become mulitplied with functions ofp2

1, p
2
2, q

2 exam-
ples of which are in [12, 22] and the full results can be
found in [21]. In the work I have been involved in we have
done the relevant integrations in Euclidean space, i.e. with
P2

1, P
2
2,Q

2 = −p2
1,−p2

2,−q2 always positive.
How models actually contribute to the muon anomaly

aµ can be studied by rewriting the integral overP,1P2
2,Q

2

in the form [10]

aµ =
∫

dlP1dlP2 aLL
µ =

∫

dlP1dlP2dlQ aLLQ
µ (2)

with lP = (1/2) ln
(

P2/GeV2
)

. The reason for choosing
the logarithm is that this way it is easiest to see which
momentum region contributes. Alternatively one can in-
tegrate each momentum up to a cut-off Λ.

One should remember that the different contributions
are usually defined within a given model or approach.
What is included under the same name can therefore differ
and one should be careful when drawing conclusions from
comparing calculations.

3 The ENJL model

The main model underlying the work of [13–15] is the
extended Nambu-Jona-Lasinio (ENJL) as introduced in
[23, 24]. The Lagrangian is given by

LENJL =qα
{

iγµ
(

∂µ − ivµ − iaµγ5

)

− (M + s − ipγ5)
}

qα

+ 2gS

(

qαRqβL
) (

qβLqαR
)

− gV

[(

qαLγ
µqβL
) (

qβLγµq
α
L

)

+
(

qαRγ
µqβR
) (

qβRγµq
α
R

)]

with q ≡
(

u, d, s
)

. vµ, aµ, s, p are the usual external vec-
tor, axial-vector, scalar and pseudoscalar matrix sourcesas
used in Chiral Perturbation Theory.M is the quark-mass
matrix. This model has no confinement but spontaneous
symmetry breaking and has good pion, vector meson and
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Figure 2. The bubble sum producing meson poles.
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Figure 3. The two calsses of diagrams contributing to HLbL
in the ENJL model. The crossed regions indicate the bubble sum
“propagators.” (a) Quark-loop type (b) Resonance exchangetype

“π
0
”

Figure 4. Theπ0 exchange
contribution. The blobs and
the propagator need
modeling.

OK axial vector-meson phenomenology. The usual NJL
model does not have thegV term and does not include (ax-
ial) vector mesons. The states are dynamically realized via
bubble resummation. The simplicity of the model and its
reasonably good phenomenology is why we used it as a
basis for the calculation.

The bubble resumation shown in Fig. 2 produces me-
son poles. The model with the parameters fitted in [23, 24]
has a constituent quark mass ofMQ = 263 MeV. It has
a number decent matchings to QCD short distance, e.g.
for ΠV − ΠA but fails in others and it always generates
a vector meson dominance (VMD) type of behaviour in
couplings to external photons. Processes are constructed
by one-loop “vertices” coupled together with bubble chain
“propagators.” The relevant diagrams for HLbL are de-
picted in Fig. 3. Note that the exhange includes both the
so-called pole and off-shell parts as calculated within the
model. The vertices have also a nontrivial momentum de-
pendence.

4 π0-exchange

The single largest numerical contribution is given by “π0”
exchange, depicted in Fig. 4. The blobs need modeling
and the propagator in the ENJL model also has corrections
to the 1/(p2 − m2

π0). The pointlike vertex has a logarith-
mic divergence which is uniquely predicted [25, 26]. The
VMD form-factor in theπ0γ∗γ∗ form-factor, the blobs,
were modeled in [14] with a variety of form-factors and
as a function of the cut-off Λ (corrected for the overall
sign error discovered by [22]). We took the form-factor
that was made to fit the then existing data integrated up to
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Table 1. Theπ0 exchange results of [14].

aµ × 1010

Λ Point- ENJL- Point- Transv. CELLO-
GeV like VMD VMD VMD VMD
0.5 4.92(2) 3.29(2) 3.46(2) 3.60(3) 3.53(2)
0.7 7.68(4) 4.24(4) 4.49(3) 4.73(4) 4.57(4)
1.0 11.15(7) 4.90(5) 5.18(3) 5.61(6) 5.29(5)
2.0 21.3(2) 5.63(8) 5.62(5) 6.39(9) 5.89(8)
4.0 32.7(5) 6.22(17) 5.58(5) 6.59(16) 6.02(10)

2 GeV as our main result with a guesstimate of the error.
This result was in quite good agreement with [18] which
used the pointlike-VMD approach. This contribution has
since been reevaluated many times using different models
and approaches. A partial list is:
BPP [14]: 5.9(0.9)× 10−10

Nonlocal quark model [27]: 6.27× 10−10

DSE (Dyson-Schwinger modeling)[28]: 5.75× 10−10

LMD+V [22]: (5.8− 6.3)× 10−10

Formfactor inspired by AdS/QCD [4, 29]: 6.54× 10−10

Chiral Quark Model [30]: 6.8× 10−10

Constraint via magnetic susceptibility [31]: 7.2× 10−10

VV ′P model [32]: 6.66× 10−10

All of these are in reasonable agreement, within the errors.
Future improvements will come when more experimental
results are included as discussed in the talk by Nyffeler [6].

Two more comments are needed. The above numbers
are for theπ0. One needs to take into account theη and
η′ exchange as well. The latter is enhanced due to the
charge combinations in theη′γ∗γ∗ vertex. In largeNc mod-
els like the ENJL model, the pseudoscalar spectrum is not
like QCD, one has aπ0, a π̃ (ūu + d̄d quark content) and
a πs (s̄s). The π̃ has the same mass as theπ0 and due to
the quark charges is contributes 25/9 times theπ0 con-
tribution. Lattice QCD calculations with only connected
diagrams included will have the ˜π contribution as well so
there will be an unphysical enhancement compared to the
QCD result for the pseudoscalar exchange part. In [14] we
used pointlike-VMD to estimate the ratio ofπ0, η, η′ con-
tributions as 5.58, 1.38, 1.04. Models that include large
Nc-breaking effects and fit the mixings to data typically
end up with very similar numbers. The total pseudoscalar
exchange contribution I thus estimate to be

aPS
µ = (8− 10)× 10−10 (3)

An example of a specific calculation is the AdS/QCD re-
sult ofaPS

µ = 10.7×10−10 [33] which also includes excited
pseudoscalars.

The other comment is that the short-distance behaviour
of the four-point function is known in several limits. In
particular whenP2

1 ≈ P2
2 ≫ Q2 the four point func-

tion is related to the axial-vector-vector-vector three-point
function [34]. This three point function has a number of
exact properties in QCD and we thus know how it be-
haves. The above models forπ0-exchange do not exhibit
this behaviour. It can be implemented via making one
of the blobs in Fig. 4 pointlike [34] and one then obtains
7.7×10−10 for theπ0-exchange contribution. Plots how this
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Figure 5. The quantityaLLQ
µ defined in (2) as a function ofP1

andQ for several ratiosP1/P1. The lines indicate the surface.

affects the contribution of different momentum regions are
in [10]. The above behaviour of the four-point function
must be obeyed in a full calculation, however whether one
implements it viaπ0-exchange is a choice. Models incor-
porating a short-distance quark-loop contribution have the
short-distance part of this included [10, 27]. One can see
this when comparing quark-loop plus pseudo-scalar ex-
change of [14] with pseudo-scalar exchange of [34].

5 Quark-loop

The pure quark-loop contribution with a constant mass is
known analytically. One of the surprises is that it con-
verges rather slowly. A significant portion is from high
momentum regions. With a constituent quark mass of
300 MeV and a cut-off of 1(2) GeV 50(25)% of the full
contribution is still missing. A more visual illustration of
this is the plot ofaLLQ

µ defined in (2) of this contribution.
The contribition is plotted in Fig. 5 as a function ofP1

andQ for several ratios ofP2/P1. The volume under the
curve is proportional toaµ. The contribution peaks for
P1 ≈ P2 ≈ Q and around 1 GeV. In [14] we used the ENJL
up to a cut-off Λ and added a short-distance quark-loop
where we used the quark-massMH = Λ as a lower cut-off.
The estimate used by HKS was a quark-loop damped by
VMD factors in the photon legs. The results are given
in Tab. 2. Notice especially the stability when we add
the ENJL and the short-distance contribution in the region
Λ = 1-8 GeV. The conclusion is that the quark-loop is
about 2× 10−10. In the ENJL model the quark-loop and
scalar exchange are needed together to have correct chiral
symmetry. The sum of both is very similar to the quark-
loop estimate of HKS.

There are a number of estimates of the quark-loop that
lead to much larger numbers. These have all in common
that there is a momentum region with a fairly small (con-
stituent) quark mass that is not shielded by a VMD-like
mechanism. The most prominent example of this is the
DSE estimate of [35] 10.7(0.2)×10−10. The present status
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Table 2. The quark-loop contribution with VMD damping, the
ENJL model and with a heavy quark mass as cut-off. The

numbers areaµ × 1010.

Cut-off sum
Λ mass- ENJL

GeV VMD ENJL cut masscut
0.5 0.48 0.78 2.46 3.2
0.7 0.72 1.14 1.13 2.3
1.0 0.87 1.44 0.59 2.0
2.0 0.98 1.78 0.13 1.9
4.0 0.98 1.98 0.03 2.0
8.0 0.98 2.00 .005 2.0

of this calculation is given in [20]. It not yet a full cal-
culation but includes an estimate of some of the missing
parts. This DSE model describes a lot of low-energy phe-
nomenology in a way very similar to the ENJL model. I
am quite puzzled by the difference in results.

Similar size numbers are obtained in models with a
low constituent quark mass where no VMD-like dynami-
cal effects are included. Examples are the nonlocal chiral
quark model [36] with 11.0(0.9)× 10−10 and a number of
estimates within the chiral quark model (7.6−8.9)×10−10

[30], (11.8−14.8)×10−10 [37] and (7.6−12.5)×10−10[38].
The interpretation varies from an estimate to the full HLbL
or just a part that needs to be added to other contributions.

6 Scalar exchange

The estimate of the scalar exchange contribution in the
ENJL model is−0.7× 10−10. Similar size estimates have
been obtained when exchanging a sigma-like particle. It
should be pointed out that the scalar in the ENJL model
has a phenomenology similar to the sigma but is quite a
different underlying object.

A problem here is to distinguish scalar exchange from
two-pion or pion-loop contributions. This is one of the
areas where the method of [3, 39] will allow progress.

7 a1-exchange

The exchange of axial vectors in the ENJL model was es-
timated in [14] to be about 0.6× 10−10, but due to the high
mass involved, even with a cut-off of 2 GeV only half the
contribution was there. The ENJL part also includes some
pseudo-scalar meson exchange due to the structure of the
calculation.

Axial-vector meson exchange in a more phenomeno-
logical way was done using two multiplets in [34] who
obtained 2.2× 10−10. It was later found that when correct
antisymmetrization is included, this becomes smaller by a
significant factor and is again in the ballpark of the ENJL
result. This was noticed by F. Jegerlehner. He obtains
about (0.76± 0.27)× 10−10 for the axial-vector exchange
[40, 41]. The evaluation of [42] is also in reasonable agree-
ment with the ENJL estimate.

Figure 6. The charged pion loop contribution.
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Figure 7. The momentum dependence of the pion loop contribu-
tion. Plotted isaLLQ

µ of (2) as a function ofP1 = P2 andQ. Top
surface: sQED, bottom surface:full VMD.

8 π-loop

The π-loop contribution to the four-point function is de-
picted in Fig. 6. The leftmost diagram is the naive one,
the other two are required by gauge-invariance. In more
general models also a diagram with three photons in one
vertex and one with all four in the same vertex might be
needed. These have been included in the calculations men-
tioned below when needed.

The simplest model is a point-like pion or scalar QED
(sQED). This gives a contribution of about−4× 10−10.

The single photon vertex is in all determinations used
as including the pion form-factor. For this one can use ei-
ther the VMD expression or a more model/experimental
inspired version. For theππγ∗γ∗ vertex there were origi-
nally two main approaches used, full VMD (BPP) and the
hidden local symmetry model with vector mesons (HKS).
The former is essentially using sQED and putting a VMD-
like form-factor in all the photon legs. This was proven
to be a consistent procedure in [14]. We obtained there
a result of−1.9 × 10−10 using an ENJL inspired pion
form-factor. Using a simple VMD typically gives about
−1.6 × 10−10. This version is exactly what is called the
model-independent part of the two-pion contribution in
[3, 39, 43]. The reason for the lower number compared
to the point-like pion loop is obvious in Fig. 7 where we
showaLLQ

µ of (2) as a function ofP1 = P2 andQ.
HKS [17, 18] used a different approach. Due to the

then existing arguments against full VMD they used the
hidden local symmetry model with only vector mesons
(HLS) and obtained−0.45×10−10. The difference between
this and the previous numbers was the reason for the large
error quoted on the pion-loop. This difference was rather
puzzling, one reason could be that the HLS model does
not have the correct QCD short distance constraint when
looking at the two-photon vertex with the same and large
virtuality for both photons, the full VMD model has the
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correct behaviour. This version of the HLS model also
does not give a finite prediction for theπ+-π0 mass dif-
ference. The reason for the large numerical difference is
indeed the short distance behaviour. The low momentum
behviour is very close but the negative contribution above
1 GeV, clearly visible in Fig. 8, is the main reason for the
difference [21, 44]. A comparison as a function of the cut-
off can be found in [45]. In fact, using the HLS with an
unphysical value of the parametera = 1, which then sat-
isfies the abovementioned short-distance constraint gives
very similar numbers as full VMD. This is shown in Fig. 9
From this we conclude that a number in the range−(1.5-
1.9)×10−10 is more appropriate with an error of half to 1/3
that.

More recently, it was pointed out that the effect of
pion polarizability was neglected in these calculations
and a first estimate of this effect given using the Euler-
Heisenberg four photon effective vertex produced by pions
[46] within Chiral Perturbation Theory. This approxima-
tion is only valid below the pion mass. In order to check
the size of the pion radius effect and the polarizability we
have implemented the low energy part of the four-point
function and computedaLLQ

µ for these cases. Partial results
are in [44, 45]. Full results will be published in [21]. The
effect of the charge radius is shown in Fig. 10 compared to
the VMD, notice the different momentum scales compared
to the earlier figures. As expected, the charge radius effect
is included in the VMD result since the latter gives a good
description of the pion form-factor. Including the effect of

 0.1

 0.2

 0.4
 0.1

 0.2
 0.4

-4e-11

-2e-11

 0

 2e-11

 4e-11

 6e-11

 8e-11

 1e-10

-aµ
LLQ

π loop

VMD
L9=-L10

P1 = P2
Q

-aµ
LLQ

Figure 10. −aLLQ
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charge radius is included but no polarizability.
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the polarizability can be done in ChPT by using experi-
mentally determined values forL9 andL10. The latter can
be determined fromπ+ → eνγ or the hadronic vector two-
point functions. Both are in good agreement and lead to a
prediction of the pion polarizability confirmed by the com-
pass experiment [47]. The effect of including this in ChPT
on aLLQ

µ is shown in Fig. 11 [21, 44, 45]. An increase of
10-15% over the VMD estimate can be seen.

ChPT at lowest order orp4 for aµ is just the pointlike
pion loop or sQED. At NLO pion exchange with pointlike
vertices and the pionloop calculated at NLO in ChPT are
needed. Both gives divergent contributions toaµ, so pure
ChPT is of little use in predictingaµ. If we want to see the
full effect of the polarizability we need to include a model
that can be extended all the way, or at least to a cut-off

of about 1 GeV. For the approach of [46] this was done
in [48] by including a propagator description ofa1 and
choosing it such that the full contribution of the pion-loop
to aµ is finite. They obtained a range of−(1.1-7.1)× 10−10

for the pion-loop contribution. I find this range much too
broad. One reason is that the range of polarizabilities used
in [48] is simply not compatible with ChPT. The pion po-
larizability is an observable where ChPT should work and
indeed the convergence is excellent. The ChPT prediction
has also recently been confirmed by experiment. Our work
discussed below indicates that−(2.0±0.5)×10−10 is a more
appropriate range for the pion-loop contribution.

The work described below will be publsihed in [21].
Preliminary results have been reported at several confer-
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a1

a1 a1

Figure 12. Left: thea1-exchange that produces the pion polariz-
ability. Right: an example of a diagram that is required by gauge
invariance.

ences, see e.g. [49, 50] and will be fully published in
[21]. The polarizability comes fromL9 + L10 in ChPT.
Using [51], we notice that the polarizability is produced
by a1-exchange depicted in Fig. 12. This is depicted pic-
torially in the left diagram of Fig. 12. However, once such
an exchange is there, diagrams like the right one in Fig. 12
lead to effectiveππγγγ vertices and are required by elec-
tromagnetic gauge invariance. This was done in [48] via
the propagator modifications. We deal with them via ef-
fective Lagrangians incorporating vector and axial-vector
mesons.

If one looks at Fig. 12 one could raise the question “Is
including aπ-loop but noa1-loop consistent?” The an-
swer is yes with the following argument. We can fisrt look
at a tree level Lagrangian including pionsρ anda1. We
then integrate out theρ anda1 and calculate the one-loop
pion diagrams wth the resulting Lagrangian. In the dia-
grams of the original lagrangian this corresponds to only
including loops with at least one pion propagator present.
Numerical results for cases including fulla1 loops are pre-
sented as well below and in [21]. As a technicality, we use
anti-symmetric vector fields for the vector and axial-vector
mesons. This avoids complications due toπ-a1 mixing.
We add vectorVµν and axial-vectorAµν nonet fields. The
kinetic terms are given by [51]

− 1
2

〈

∇λVλµ∇νVνµ −
M2

V

2
VµνV

µν

〉

+ V ↔ A . (4)

First we add the terms that contribute to theLi [51]

FV

2
√

2

〈

f+µνV
µν
〉

+
iGV√

2

〈

Vµνuµuν
〉

+
FA

2
√

2

〈

f−µνA
µν
〉

(5)

with L9 =
FV GV

2M2
V

, L10 = −
F2

V

4M2
V
+

F2
A

4M2
A
. The Weinberg sum

rules imply in the chiral limitF2
V = F2

A + F2
π, F2

V M2
V =

F2
AM2

A and requiring VMD behaviour for the pion form-
factorFVGV = F2

π.
First, look at the model with onlyπ andρ. The one-

loop contributions toΠρναβ are not finite. They were also
not finite for the HLS model of HKS, but the relevant
δΠρναβ/δp3λ was. However, in the present model it is only
finite for GV = FV/2 and then the result foraµ is identical
to the HLS model. The same comments as made for the
HLS model thus also apply.

Next we do add thea1 and requireFA , 0. After a
lot of work we find thatδΠρναβ/δp3λ|p3=0 is finite only for
GV = FV = 0 andF2

A = −2F2
π or, if including a full a1-

loop F2
A = −F2

π. These solutions are clearly unphysical.
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We then add allρa1π vertices given by

λ1

〈[

Vµν, Aµν
]

χ−
〉

+ λ2

〈

[

Vµν, Aνα
]

hµ
ν
〉

+ λ3

〈

i
[

∇µVµν, Aνα
]

uα
〉

+ λ4

〈

i
[

∇αVµν, Aαν
]

uµ
〉

+ λ5

〈

i
[

∇αVµν, Aµν
]

uα
〉

+ λ6

〈

i
[

Vµν, Aµν
]

f−
α
ν

〉

+ λ7

〈

iVµνA
µρAνρ

〉

. (6)

These are not all independent due to the constraints onVµν
andAµν [52], there are three relations. After a lot of work
[21] we found that no solutions withδΠρναβ/δp3λ|p3=0 ex-
ists except those already obtained withoutΛi terms. The
same conclusions holds if we look at the combination that
shows up in the integral overP2

1, P
2
2,Q

2. We thus find
no reasonable model that has a finite prediction foraµ
for the pion-loop includinga1. If we choose the param-
eters as fixed by the Weinberg sum rules and the VMD be-
haviour of the pion-form factor we obtain−aLLQ

µ as shown
in Fig. 13. Adding a fulla1-loop changes the plot only
marginally. As long as we require the correct polariz-
ability and a VMD-like form-factor behaviour, the plots
look quite similar for all cases below 1 GeV. The inte-
grated value up toΛ for a number of cases is hown in
Fig. 14. We see that all models end up with a value of
aµ = −(2.0 ± 0.5) × 10−10 when integrated up-to a cut-
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off of order 1-2 GeV. We conclude that that is a resonable
estimate for the pion-loop contribution.

9 Conclusions

The present number for the HLbL contribution to the muon
anomaly,aµ = (gµ−2)/2, is (11±4) or (10.5±2.6)×10−10

[10–12] depending somewhat on which error estimates
and which contributions are taken into account. In this
talk I have given an overview of a number of model esti-
mates with the emphasis on my old work [13–15] as well
as a number of newer developments. For the latter I have
spent quite some time on our reevaluation of the pion loop
contribution [21, 44, 45, 49, 50], as well as given a number
of arguments why the HLS number of [17, 18] should be
considered obsolete. The conclusion is that the pion-loop
contributes with−(2.0± 0.5)× 10−10.

One of the remaining problems in the model approach
is that the class of models with an “unshielded” quark-
loop at relatively low-energies for the photns tend to obtain
larger numbers. Whether this is a real phenomenon or not
is a question which needs to be settled. My own opion
there is that I see no counterpart of it inγγ → hadrons at
low to intermediate energies beyond the already included
single meson and two-pion exchanges.

For contributions of different mechanisms, progress
can be expected both from the dispersive approaches men-
tioned and experiment restricting the couplings of off-shell
or virtual photons to meson that go into the modeling. Al-
ternatively, a full new model calculation that includes phe-
nomenology beyond what the ENJL does, is very desir-
able. For more deatils about the other approaches and the
lattice I refer to the other talks at this conference.
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