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Abstract

We have studied left-right-symmetric (LR) model building in two specific instances: the
Minimal Left-Right-Symmetric Model (MLRM), with gauge group SU(3)C ⊗ SU(2)L ⊗
SU(2)R ⊗ U(1)B−L and parity as the LR symmetry; and a non-supersymmetric, trinified
theory, with gauge structure SU(3)L ⊗ SU(3)R ⊗ SU(3)C ⊗ Z3 and an additional, novel,
SU(3) family symmetry. For the MLRM, we have rederived the Lagrangian in the gauge
and mass eigenbases, partly using the SARAH [11] model building framework. We have
demonstrated how the gauge symmetry is broken to the Standard Model, and explicitly
found the corresponding Goldstone bosons. For the trinified model, we have constructed
the Lagrangian, spontaneously broken the gauge and global symmetries, and calculated
the masses and charges of the resulting particle spectra. We show that the addition of
the SU(3) family symmetry reduces the amount of free parameters to less than ten. We
also demonstrate a possible choice of vacuum which breaks the trinified gauge group down
to SU(3)C ⊗ U(1)Q, and find particularly simple minimum for this choice of potential.
We conclude that the MLRM deserves its place as a popular LR extension, with several
appealing features, such as naturally light neutrinos. The trinified model with SU(3)
family symmetry, meanwhile, is an economic and exciting new theory. Our first, simple
version seems phenomenologically viable, using very few parameters. Furthermore, several
other theoretical variations are possible, many of which seem worthy of study.
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Populärvetenskaplig sammanfattning

Det är i princip omöjligt att överskatta vikten av begreppet symmetri för modern fysik.
Redan när Maxwell p̊a 1800-talet förenade elektricitet och magnetism till en enda kraft
fanns en underlig egenskap i hans teori. Hans fysikaliska system kännetecknas av poten-
tialer, som är relaterade till de elektriska och magnetiska fälten. Det visade sig att om
man förändrar dessa potentialer enligt specifika regler s̊a f̊ar man samma system, samma
fysik, tillbaka. Identiska fysikaliska resultat ges allts̊a av flera olika konfigurationer av
potentialerna. Man säger att teorin är invariant under en intern symmetri, där symmetri-
transformationerna är de ovan nämnda reglerna. Samma koncept styr idag hur fysiker
konstruerar teorier som beskriver de fundamentala krafterna och partiklarna; om man vet
exakt vilka symmetrier som teorin är invariant under, s̊a kan man räkna ut exakt hur
de olika partiklarna växelverkar. Naturens fundamentala krafter ges allts av de interna
symmetrierna!

Det är allts̊a inte konstigt att mycket av arbetet i att konstruera en teori för det
subatomära Universum ligger i att försöka hitta vilka symmetrier den bör besitta. En
specifik typ av intern symmetri är s.k. vänster-högersymmetri. Med vänster och höger
avses inte det man brukar mena i dagligt tal, utan snarare egenskaper som vissa partiklar
har; s̊adana partiklar kan vara antingen vänster- eller högerhänta. Standardmodellen för
partikelfysik beskriver naturen p̊a den väldigt lilla skalan bättre än n̊agon annan teori
n̊agonsin har gjort. Den behandlar dock s.k. vänster- och högerhänta partiklar ojämlikt,
och det st̊ar inte klart varför, eller om det måste vara s̊a. De flesta fysiker tycker det hade
varit mest naturligt om Naturen behandlade dem lika.

Här granskar jag tv̊a teorier som faktiskt behandlar vänster och höger jämlikt, vilket
leder till en mängd nya egenskaper och förutsägelser. Förhoppningen är att en s̊adan teori
ska visa sig beskriva naturen ännu bättre, förklara saker som standardmodellen inte kan,
och p̊a s̊a sätt ge oss en djupare först̊aelse för verklighetens mest grundläggande struktur.

3



Contents

1 Introduction 7
1.1 Background and rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 The effective potential in classical and quantum-corrected scalar theories . 9
1.3 Goldstone’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.1 Spontaneous symmetry breaking in the linear sigma model . . . . . 13
1.3.2 The Goldstone theorem . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.3 Goldstone’s theorem in the presence of quantum effects . . . . . . . 17

1.4 The identification of Goldstone bosons in a scalar spectrum . . . . . . . . . 18
1.5 SARAH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.5.1 The anatomy of a SARAH model file . . . . . . . . . . . . . . . . . 23

2 The minimal left-right-symmetric model 25
2.1 Fermion and vector particle content . . . . . . . . . . . . . . . . . . . . . . 25

2.1.1 Fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.2 Gauge bosons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Gauge anomaly cancellation . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3 Higgs sector and symmetry breaking . . . . . . . . . . . . . . . . . . . . . 28

2.3.1 Higgs fields and vacuum structure . . . . . . . . . . . . . . . . . . . 28
2.3.2 Gauge boson masses . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.3 SU(2)R ⊗ U(1)B−L → U(1)Y Goldstone bosons . . . . . . . . . . . . 32
2.3.4 SU(2)L ⊗ U(1)Y → U(1)Q Goldstone bosons . . . . . . . . . . . . . 35

2.4 Scalar potential and Higgs mass spectrum . . . . . . . . . . . . . . . . . . 37
2.4.1 SARAH implementation of the scalar potential . . . . . . . . . . . 43

2.5 Yukawa sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.6 Tree level Lagrangian in physical basis . . . . . . . . . . . . . . . . . . . . 47

2.6.1 Yukawa sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.6.2 Gauge boson-fermion interactions . . . . . . . . . . . . . . . . . . . 50
2.6.3 Gauge boson-scalar interactions . . . . . . . . . . . . . . . . . . . . 52
2.6.4 Gauge boson interactions . . . . . . . . . . . . . . . . . . . . . . . . 55

2.7 Phenomenological overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.8 Conclusions and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3 Non-SUSY Trinification 60
3.1 Particle content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.2 Symmetry breaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.3 Tree-level Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.1 Kinetic terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.3.2 Yang-Mills sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3.3 Yukawa sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3.4 Scalar potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4



3.4 Mass spectrum and charges . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.4.1 Scalars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.4.2 Gauge symmetry Goldstone bosons . . . . . . . . . . . . . . . . . . 67
3.4.3 Leptons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.4.4 Quarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.4.5 Gauge bosons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.5 Conclusions and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4 Summary 76
4.1 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A MLRM SARAH model file 77

B References 80

5



Foreword

This thesis is the result of roughly one year of work, done at Lund University, under Roman
Pasechnik. In the early summer of 2014, when discussing my project, Roman presented me
with a long list of possible projects. Among them was a fascinating Grand-Unified Theory,
called Trinification, which seemed to offer a wide range of predictions; regenerating the
rich theoretical structure of the Standard Model, using a highly unified structure, with
very few free parameters. I was intrigued, and the choice was easy. In order for me to
learn about model building before tackling this new theory, we thought it wise for me to
treat a more well-studied case, where results would be available in the literature for me to
reference. This model ended up being the Minimal Left-Right-Symmetric Model (MLRM),
which is of additional interest as an intermediate step when Trinification is broken down
to the Standard Model.

The experience has been highly educational. I have learned how field theories are
constructed from the ground up, and become intimately familiar with symmetry breaking.
I have had to handle large, messy calculations using several of the computational tools of
the trade. I have also learned about more about renormalization theory, effective potentials,
anomalies and other field theory. Thinking back to what I knew, or didn’t, a year ago,
seems almost surreal. This project has been my first taste of actual research and I feel
well-prepared to continue my career in particle physics.

In hindsight, it’s tempting to think that I would have liked to have done more with the
Trinification theory. Furthermore, there are several avenues of research which we started to
pursue, like studying the vacuum structure at the 1-loop level for both theories, but were
unable to complete due to computational limitations or lack of time. However, I realize
that reproducing the known results for the MLRM was a necessary step in order for me
to learn how to treat Trinification, and that studying the MLRM with tools like SARAH
has opened interesting new possibilities, like studying the vacuum at 1-loop, as mentioned.
To my knowledge, this has not been done before. Thus, several of the things that I would
have liked to address in the thesis we are now planning to study; things I have worked
on which are not included here, like code for the effective potential and a Trinification
SARAH model file, will be of use as my work continues in the coming months.

6



1 Introduction

1.1 Background and rationale

Having been almost continually tested through the latter half of the last century, the
Standard Model (SM; for a thorough description, see Ref. [1]) is one of the most complete
and accurate theories in the history of physics. Its gauge group SU(3)C ⊗SU(2)L⊗U(1)Y
encompasses all known fundamental interactions except gravity (a consistent quantum field
theory of which currently eludes theoretical physics). Its success ranges from remarkable
numerical predictions of electroweak parameters—some, like that of the fine structure
constant α, accurate to around ten parts in a billion [2]—to the no less remarkable discovery
of the Higgs boson in 2012 [3, 4].

However, the SM is, in several regards, theoretically incomplete and arbitrary. There
are no appealing Dark Matter candidates; the particle spectra contain huge hierarchies
which are theoretically not well-motivated (why is the top quark 35,000 times heavier than
the down quark? Why are the neutrinos so extremely light?); the large number of free
parameters (around 30) allows fine-tuning which detracts from the impressiveness of some
predictions.

Since the SM so well describes Nature at energies for which it is phenomenologically
valid, further theoretical developments should approximate the SM, at least to some degree,
at these energies (in the same way that modern physics approaches classical results when
quantum effects are small). Thus, when new theories are constructed, in the hopes of
solving some of the theoretical inconsistencies of the SM, they are commonly designed as
extensions to the SM, with larger symmetry groups or particle content.

One class of such theories is left-right-symmetric (LR) models, where left and right
chiralities are treated equally at high energy scales. This is in contrast to the SM, where,
for example, the charged electroweak current only couples to left-handed fermions. These
models resolve a number of unsatisfactory features of the SM, such as

• The fact that the SM prefers one handedness over the other is not theoretically
well-understood. LR models are often seen as more beautiful since they restore this
symmetry.

• Since these models commonly feature heavy Majorana right-handed neutrinos, small
left-handed neutrino masses are naturally introduced via see-saw mechanism [5].

• In the SM, the hypercharge Y is an arbitrary quantum number. In left-right-
symmetric models this generator arises in a more coherent way from the less arbitrary
quantity B − L (the baryon number minus the lepton number).

This leaves unresolved, of course, several other problems with the SM: The arbitrariness
of the large mass hierarchies, the unappealingly large number of free parameters, and
the fact that charge is quantized (meaning the charge of the electron and the charge of
the proton satisfy Qe = −QP ), among others. These issues are addressed in Grand-
Unified Theories (GUTs); theories where the SM, or extensions to it, are embedded in more
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symmetric theories. These large symmetry groups are then broken down to the SM group
at some high scale, often in steps, producing the correct phenomenology and, preferably,
new predictions. Desirable qualities include a group structure which, through the way it is
broken, produces the aforementioned charge quantization; fewer free parameters by means
of unification; dark matter candidates among its particle spectrum, et cetera.

In this study, we have considered two LR theories: The first is a straight-forward
extension to the SM, possessing a SU(3)C ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)B−L symmetry,
commonly referred to as the Minimal Left-Right-Symmetric Model (MLRM) [6–8]. The
second is a non-supersymmetric (non-SUSY) version of a GUT with the gauge group
SU(3)C ⊗ SU(3)L ⊗ SU(3)R, called Trinification [9]. In addition to these gauge sym-
metries, Trinification also possesses a global family or flavour symmetry, SU(3)f , a novel
feature. We have investigated symmetry breaking, particle spectra and mixings, and other
features of the models. This has been achieved in part with the help of the Mathematica
package SARAH [10, 11].

The study is essentially divided into three parts: Chapter 1 contains an introduction
and the theoretical basis used throughout the thesis.

Chapter 2 is dedicated to the MLRM. We first introduce the model and its symme-
tries and particle content, and go on to study the spontaneous gauge symmetry breaking
mechanism, including the identification of the Goldstone bosons. We also derive the tree
level Lagrangian in the physical basis, and give a short phenomenological overview. Fur-
thermore, we have laid the basis for future research, most notably by constructing the
corresponding SARAH model file, and other code, which may be used to find the renor-
malization group equations and, subsequently, to study the vacuum properties at the 1-loop
level.

Chapter 3 introduces the Trinification model. We have shown that the group SU(3)L⊗
SU(3)R ⊗ SU(3)C ⊗ SU(3)f , where the last group is a global family symmetry, breaks
down to the SM group, and derived the group representations, masses and charges of the
particles at tree level. We discuss the features of the theory, most importantly the novel
addition of the global SU(3) family symmetry.
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1.2 The effective potential in classical and quantum-corrected
scalar theories

We will now briefly review the effective potential and spontaneous symmetry breaking
(SSB) for simple scalar theories, classically and with quantum corrections. Our derivations
roughly follow Refs. [12] and [13].

In a classical field theory, in order to find the vacuum expectation value of some field 〈φ〉,
we simply minimize the classical potential. When quantum effects are turned on (that is,
when higher-order loop diagrams are also taken into account), however, this value may be
shifted [12]. We seek a function which, when minimized, yields the quantum loop-corrected
value of 〈φ〉.

Consider a classical theory of a single real scalar field φ with the Lagrangian

L =
1

2
(∂φ)2 − 1

2
µ2φ2 − 1

4!
λφ4. (1.1)

The theory is generated by the functional

Z[J ] = eiW [J ] =

∫
Dφei(S[φ]+Jφ)

where

Jφ ≡
∫
d4xJ(x)φ(x).

is the source term. Let us define the classical field as

φcl(x) ≡ 〈Ω|φ(x)|Ω〉

i.e. the VEV of the quantum field (in the presence of the external source). Then

φcl(x) =
δW [J ]

δJ(x)
=

1

Z[J ]

∫
Dφei(S[φ]+Jφ)φ(x). (1.2)

Note that φcl is given as a functional of J .
We wish to construct a Legendre transform, moving from W (J), to some Γ(φcl). Let

us define

Γ[φcl] ≡ W [J ]−
∫
d4xJ(x)φcl(x) (1.3)

The idea is that J be eliminated from the RHS in favour of φcl, through the dependence
of J on φcl given in Eqn. (1.2). Γ is called the effective action. Calculating the functional
derivative of the effective action with respect to J , we find the simple result

δΓ[φcl]

δφcl(x)
=

∫
d4y

δJ(y)

δφcl(x)

δW [J ]

δJ(y)
−
∫
d4y

δJ(y)

δφcl(x)
φcl(y)− J(x) = J(x).
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In other words, if J(x) = 0 and we have no external source, we have

δΓ[φcl]

δφcl(x)
= 0. (1.4)

Now, since the effective action should be a spatially extensive quantity [12], we can write
it as some coefficient Veff times the four-volume V of the system,

Γ[φcl] = −VVeff(φcl).

Plugging this into (1.4), we immediately see that

∂Veff(φcl)

∂φcl

= 0

for J = 0; in other words, the effective potential Veff gives 〈φ〉 when minimized in the
absence of external sources. Since J = 0, the definition (1.3) implies that Γ = −W ; the
effective potential is simply the energy density of the state.

Let us now derive the form of Veff , following [13], to the first loop order. We start by
computing W [J ]. From here on, we omit the “cl” index and write φcl ≡ φ. Let us denote
by φs(x) the solution to the equation

δ(S[φ] +
∫
d4yJ(y)φ(y))

δφ(x)
= 0,

implying
∂2φs(x) + V ′(φs(x)) = J(x).

Letting φ = φs + φ̃, expanding in orders of φ̃ and restoring ~, we have

Z[J ] = e(i/~)W [J ] =

∫
Dφe(i/~)(S[φ]+Jφ)

≈ e(i/~)(S[φs]+Jφs)

∫
Dφ̃e(i/~)

∫
d4x((∂φ̃)2/2−V ′′(φs)φ̃2/2)

= e(i/~)(S[φ]+Jφ)−tr log(∂2+V ′′(φs))/2

or

W [J ] = S[φs] + Jφs +
i~
2

tr log(∂2 + V ′′(φs)) +O(~2).

Using (1.2),

φ =
δW

δJ
=
δ(S[φs] + Jφs)

δφs

δφs
δJ

+ φs +O(~) = φs +O(~).

Plugging this into Eqn. (1.3), the Legendre transform defining the effective action, we find

Γ[φ] = S[φ] +
i~
2

tr log(∂2 + V ′′(φ)) +O(~2). (1.5)
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which follows from the relation detM = etr logM for the matrix exponential. Assuming φ
is constant in x (the vacuum is invariant under translation) allows us to evaluate the trace
in momentum space:

tr log(∂2 + V ′′(φ)) =

∫
d4x〈x| log(∂2 + V ′′(φ))|x〉

=

∫
d4x

∫
d4k

(2π)4
〈x|k〉〈k| log(∂2 + V ′′(φ))|k〉〈k|x〉

=

∫
d4x

∫
d4k

(2π)4
log(−k2 + V ′′(φ)).

Let us write as an Ansatz for Γ

Γ[φ] =

∫
d4x(−A(φ) +B(φ)(∂φ)2 + C(φ)(∂φ)4 + . . . )). (1.6)

Then, under our assumptions of φ constant in x and no external sources,

Γ[φ] =

∫
d4x(−A(φ)).

Eqn. (1.4) thus implies that A′(φ) = 0; minimizing A gives 〈φ〉, and we identify A = Veff .1

Using the Ansatz (1.6) with (1.5), recalling that S[φ] =
∫
d4x(−V (φ)) under our as-

sumptions, we finally obtain

Veff(φ) = V (φ)− i~
2

∫
d4k

(2π)4
log

(
−k2 − V ′′(φ)

k2

)
+O(~2), (1.7)

known as the Coleman-Weinberg effective potential. We have supplied the constant factor
k2 to make the logarithm dimensionally sensible. Eqn. (1.7) takes the form of the classical
potential V plus quantum corrections parametrized by ~.

The momentum integral in (1.7) diverges due to its quadratic dependence on the im-
plicitly imposed cutoff. To remedy this, we add counterterms to the original Lagrangian
(1.1):

L =
1

2
(∂φ)2 − 1

2
µ2φ2 − 1

4!
λφ4 + A(∂φ)2 +Bφ2 + Cφ4.

Adding these to (1.7) we obtain

Veff(φ) = V (φ) +
~
2

∫ Λ2

d4kE
(2π)4

log

(
k2
E − V ′′(φ)

k2
E

)
Bφ2 + Cφ4 +O(~2)

where we have also performed a Wick rotation into Euclidean space and imposed a cutoff
k2
E = Λ2. Integrating, we find

Veff(φ) = V (φ) +
Λ2

32π2
V ′′(φ)− (V ′′(φ))2

64π2
log

e1/2Λ2

V ′′(φ)
+Bφ2 + Cφ4. (1.8)

1Note that the argument of A is φcl, equal to the VEV 〈φ〉 of the quantum operator φ, with the subscript
dropped.
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V (φ) ∼ φ4, so V ′′(φ) ∼ φ2 and (V ′′(φ))2 ∼ φ4, and each term containing the cut-off
can be absorbed into a corresponding counterterm, leaving the expression for the effective
potential containing only physical parameters.

We will now demonstrate how this occurs for the simplified case of µ2 = 0. This
scenario is of physical interest; when µ2 > 0, the vacuum lies at the origin and everything
is symmetric; when µ2 < 0, the φ → −φ symmetry is spontaneously broken. It is not
clear, however, what happens when we take µ2 = 0 and include quantum corrections. Is
the symmetry spontaneously broken or not?

Plugging V (φ) = − λ
4!
φ4 into (1.8), we get

Veff =

(
Λ2λ

64π2
+B

)
φ2 +

(
λ

4!
+

λ2

(16π)2
log

(
φ2

λ2

)
+ C

)
φ4 +O(λ3) (1.9)

where C has been redefined to absorb constants in φ. To determine the two counterterm
coefficients B and C we need two renormalization conditions. To obtain the first, we note
that setting µ2 = 0 means that the so-called renormalized mass-squared, defined as the
coefficient of φ2 in V , is zero. We wish to preserve this in Veff , so we take

d2Veff

dφ2

∣∣∣∣
φ=0

= 0

as the first condition. Referring to (1.9), this implies B = −Λ2λ/(64π2). We cannot
employ the same idea for the φ4 term, since the corresponding coefficient in Veff contains
log φ, which is not defined for φ = 0. Instead, we evaluate this derivative at some scale Q.
Thus

d4Veff

dφ4

∣∣∣∣
φ=Q

= λ(Q), (1.10)

where λ(Q) is a coupling that runs depending on the scale Q, is our second renormalization
condition. Solving (1.10) for C and plugging back into (1.9), we get, finally,

Veff =
λ(Q)

4!
φ4 +

λ2(Q)

(16π)2
φ4

(
log

(
φ2

Q2

)
− 25

6

)
+O(λ3(Q)), (1.11)

where we have noted that λ = λ(Q) +O(λ2). Thus, we have the renormalized (depending
only on purely physical parameters) effective potential for our φ4 theory with µ2 = 0.

We are now equipped to answer the question regarding the spontaneous symmetry
breaking, or lack thereof, in a quantum-corrected theory with µ2 = 0. Let us consider the
effective potential (1.11) close to the origin. The leading, “classical”, term ∝ φ4, vanishes.
The next-to-leading order term, however, contains the factor log(φ2/Q2), which approaches
negative infinity in the φ → 0 limit. The origin, then, is a local maximum, which means
that there is a local minimum at some 〈φ〉 6= 0.

The function aφ4 + bφ4 log(φ2), for some coefficients a and b, has been plotted against
φ in Fig. 1.1 to illustrate this. Thus, clearly, the reflection φ → −φ symmetry is spon-
taneously broken by the minima generated by quantum corrections. This is known as
radiative symmetry breaking [15].
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φ

Veff

Figure 1.1: The function Veff = aφ4 + bφ4 log(φ2), for some constants a, b, plotted against
φ. This function is of the form of the effective potential in Eqn. (1.11). The two minima are
generated by quantum corrections, and spontaneously break the original reflection symmetry
of the theory, despite the lack of a classical µ2 term.

Even for more complicated theories, the expressions remain simple. In this paper, we
will use the form given in [16], for a general, renormalizable theory:

Veff ≈ V +
1

(16π)2
V (1),

V (1) =
∑
n

m4
n

4
(−1)2sn(2sn + 1)

(
log

(
m2
n

Q2

)
− 3

2

)
.

Here, V is the classical (tree-level) potential; the sum over n runs over all particles in the
theory; sn and mn are the spins and tree-level masses for each particle. This form holds
for the so-called DR renormalization scheme.

1.3 Goldstone’s theorem

1.3.1 Spontaneous symmetry breaking in the linear sigma model

Following [12], we will give a brief introduction to the concept of spontaneous symmetry
breaking (SSB). Consider the N -field linear sigma model,

L =
1

2
(∂µφ

i)2 +
1

2
µ2(φi)2 − λ

4
((φi)2)2,

where the factor (φi)2 is always summed over i = 1, . . . , N . Note the rescaling from the
usual convention λ/4! → λ/4. This Lagrangian is invariant under the group O(N) of
rotations in N -dimensional space, the operations of which can be written as

φi → Rijφ
j,
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where R is an orthogonal N ×N matrix.
Since, at this stage, this is a fully classical field theory, we obtain the vacuum by simply

minimizing the potential

V (φi) = −1

2
µ2(φi)2 +

λ

4
((φi)2)2. (1.12)

This is satisfied by any vector of fields φi0 for which

(φi0)2 =
µ2

λ
.

Thus, we are free to choose the direction in which this vector of fixed length points. Once
common such choice is

φ0 = (0, . . . , 0, v),

i.e. letting the vacuum point purely in the φN direction in field space, for some number v.
From (1.12), v2 = µ2/λ. We are obviously free to write the theory in terms of new fields
π, σ, shifting from the origin to v in the φN direction:

φi(x) = (πk(x), v + σ(x)),

where now k = 1, . . . , N − 1. Let us plug our new fields into the Lagrangian, keeping only
the interesting terms (quadratic and higher), and simplify:

L =
1

2
(∂µπ

k)2 +
1

2
(∂µσ)2 − 1

2
(
√

2µ)2σ2

−
√
λµσ3 − λ

4
σ4 −

√
λµσ(πk)2 − λ

2
σ2(πk)2 − λ

4
((πk)2)2.

Looking closer at this result, we interpret the 1/2(
√

2µ)2σ2 term as a mass term for
the boson σ. The mass terms ∼ (πk)2 are absent, so the πk’s are massless. Since there are
N − 1 of these directions in field space to rotate among, the Lagrangian’s original O(N)
symmetry is hidden, replaced by the subgroup O(N − 1). Our choice of a specific vacuum,
the vector φi0 which points in the Nth direction, breaks the O(N) symmetry of the vacuum.

A rotation in N -dimensional space can take place in N(N−1)/2 planes; cf. the familiar
case of N = 3, where there are 3 planes in which a rotation can be made (or, three Euler
angles which together completely specify any rotation). Thus, a theory which is symmetric
under the group O(N) has N(N−1)/2 continuous symmetries. We end up with a O(N−1)-
symmetric theory, and so N(N − 1)/2− (N − 1)(N − 2)/2 = N − 1 symmetries have been
broken, the same number as the massless π bosons. This is a very general result, encased
in Goldstone’s theorem, which we will treat in more detail below.

Considering Fig. 1.2, we may also argue geometrically. The potential is spherically
symmetric, and we can excite the system from the vacuum in two directions; radially,
climbing the slope, or tangentially, by moving around the minimal circle. Moving along
this equipotential circle corresponds to a massless excitation; the Goldstone mode.
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φ1

V (φi)

φ2

(v, 0)

Figure 1.2: The linear sigma model potential V = −µ2(φi)2 + λ((φi)2)2, for N = 2,
plotted against the fields φ1,2. The infinitely degenerate vacuum states lie along the circle
with radius µ2/λ = v, among them our choice of ground state (v, 0).

1.3.2 The Goldstone theorem

We will now give a general overview and proof of the Goldstone theorem [14], of which
we saw an example in the previous section. The theorem states that when a continuous
symmetry of a theory is spontaneously broken, there will result a massless boson corre-
sponding to each generator of the broken symmetry. The proof given here follows Ref.
[12]. Consider a classical theory of N scalar fields φi(x), abbreviated φ. The Lagrangian is

L = kinetic terms− V (φ). (1.13)

Let φi0 be a constant vector of fields such that it minimizes the potential V :

∂V (φ)

∂φ

∣∣∣∣
φ(x)=φ0

= 0.

The expansion about this minimum is

V (φ) = V (φ0) +
1

2
(φ− φ0)i(φ− φ0)j

(
∂2V (φ)

∂φi∂φj

)
φ=φ0

+ . . . ,

where the matrix (
∂2V (φ)

∂φi∂φj

)
φ=φ0

≡ m2
ij
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is symmetric and has as its eigenvalues the squared mass of each particle. Since V has a
minimum at φ0, the curvature is positive there, and thus the eigenvalues of m2

ij are non-
negative. We wish to show that any spontaneously broken symmetry (that is, a symmetry
of L in (1.13) but not of the vacuum φ0) results in a zero eigenvalue of m2

ij.
That L is invariant under a continuous symmetry means that it is unchanged under a

transformation
φi → φi + α∆i(φ) (1.14)

of all the fields. Here, α parametrizes the transformation, and ∆i depends on all the φi’s.
If we consider only constant fields, L = −V , and so the potential must be invariant under
(1.14). Another way of writing this invariance is

V (φi) = V (φi + α∆i(φ)) =⇒ ∆i(φ)
∂V (φ)

∂φi
= 0.

Differentiating once w.r.t. φj and evaluating at the vacuum, we get(
∂∆i

∂φj

)
φ0

(
∂V

∂φi

)
φ0

+ ∆i(φ0)

(
∂2V

∂φi∂φj

)
φ0

= 0.

Since φ0 minimizes V , the first term is zero. It follows therefore that the second term be
must also be zero. The relation then reads

0 ·∆j(φ0) = ∆i(φ0)

(
∂2V

∂φi∂φj

)
φ0

= ∆i(φ0)m2
ij

which is an eigenvalue problem: when the vector ∆i(φ0) is nonzero, which means that
vacuum is not invariant under our symmetry transformation, it is the eigenvector of m2

ij

corresponding to the eigenvalue 0. Thus, a spontaneously broken symmetry engenders a
massless scalar, which we wished to prove.

Let us now look more closely at a non-Abelian gauge theory, containing a set of real
scalar fields which transform as

φi → (1 + iωata)ijφ
j, (1.15)

while keeping the Lagrangian unchanged. The ωa’s are infinitesimal parameters (with non-
trivial spacetime dependence, which we suppress) and the ta’s generate the transformation.
The gauge-covariant derivative acting on φi is then

Dµφ
i = (∂µ − igtaW a

µ )ijφ
j

The gauge boson kinetic terms are half the square of this, while letting the φi’s obtain a
nontrivial VEV 〈φi〉 = φi0. The term of interest to us is then

L GB mass =
1

2
m2
abW

a
µW

bµ
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where the mass matrix is given by

m2
ab = g2(itaφ0)i(itbφ0)i (1.16)

If a symmetry remains unbroken, it means that the corresponding gauge boson remains
massless. This is encoded in (1.16): the vacuum transforms as (1.15), so invariance under
the symmetry generated by some ta is equivalent to taφ0 = 0. Then, the corresponding
entry of m2

ab is zero.
We can now also compare the transformations (1.14) and (1.15). As we saw, the vector

∆i(φ0) is an eigenvector of the scalar mass matrix with mass zero (using the simplification
of constant fields). Thus, (itaφ0)i is, in fact, a vector which at the vacuum is parallel to the
Goldstone mode. In other words, i times some broken generator transforms the vacuum
(infinitesimally) in the corresponding Goldstone direction. This important fact will be
useful to us when aiming to identify the Goldstone bosons in the scalar spectra treated in
later chapters.

1.3.3 Goldstone’s theorem in the presence of quantum effects

In Section 1.3.2, we showed that when a symmetry of a scalar theory is spontaneously
broken, the matrix of second derivatives of the potential V w.r.t. the fields has a cor-
responding zero eigenvalue for each broken generator. We now wish to argue that the
situation is completely mirrored in a theory where quantum corrections are taken into
account. As discussed in Section 1.2, the effective potential Veff , when minimized, gives
the classical expectation value just as V does without quantum effects. In addition, it
necessarily obeys the same symmetries as V [12]. Thus, the first part of the original proof
may be immediately repeated for the present case; for every continuous symmetry of the
theory that is spontaneously broken, the matrix

∂2Veff(φcl)

∂φicl∂φ
j
cl

(recalling that φcl ≡ 〈Ω|φ|Ω〉; we will once again use the shorthand φcl ≡ φ) obtains one
zero eigenvalue. It remains to be shown that this means that there is a massless scalar
boson in the spectrum.

In Ref. [12], it is shown that the second derivative of the effective action Γ is equal to
the inverse propagator (that is, the inverse of the sum of connected two-point functions)
times i:

δΓ

δφi(x)δφj(y)
= i〈φi(x)φj(y)〉connected = iD−1(x, y).

Assuming constant fields and Fourier transforming,

D(x, y) =

∫
d4k

(2π)4
e−ip(x−y)D̃(p),
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where the momentum-space propagator D̃(p) is given by [12]

D̃(p) =
i

p2 −m2
0 −M2(p2)

,

that is, a geometric series of one-particle irreducible2 two-point diagrams. The pole, at the
physical mass, is shifted away from the bare mass m0 by the self-energy M2(p2). The poles
of the propagator are the zeroes of its inverse, and so the physical masses squared m2 are
obtained by solving

0 = iD̃−1(p2) =

∫
d4k

(2π)4
e−ip(x−y) δΓ

δφ(x)δφ(y)
(1.17)

with respect to p2. We seek massless particles, so let us study (1.17) with p2 = 0. Since,
this means that Γ is differentiated w.r.t. constant fields. But, from Eqn. (1.2) we see that
this in turn implies

Γ[φ] =

∫
d4x(−Veff(φ)).

Thus, as we wished to show, the matrix

∂2Veff

∂φi∂φj

does indeed have a 0 eigenvalue for every zero-mass scalar in the spectrum; Goldstone’s
theorem holds also in the quantum theory.

1.4 The identification of Goldstone bosons in a scalar spectrum

We will now develop the machinery later used for identifying the Goldstone bosons in a
theory of the type of those considered in this text. This work has been done in collaboration
with J.E.C. Molina3 and J. Wessén3.

It is instructive to first explore the Standard Model. The SM electroweak symmetry
G = SU(2)L×U(1)Y is broken into the EM symmetry group H = U(1)Q. The Higgs field
is fundamental under G,

Φ =

(
φ+

v + φ0

)
=

(
φ1 + iφ2

v + φ3 + iφ4

)
(1.18)

We first seek to find the generator of the unbroken symmetry (EM), i.e. Q. To do this, we
note that the vacuum, which we chose to be

〈Φ〉 =

(
0
v

)
,

2One-particle irreducible (1PI) diagrams are those which cannot be split into two diagrams by the
removal of any one line.

3 Theoretical High Energy Physics (THEP) at Lund University, Lund, Sweden
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should be invariant under U(1)Q. Since Φ is fundamentally represented under SU(2)L, it
transforms under the gauge transformation of G as

Φ→ e
i
2
ωa2σ

a

eiω1YΦΦ ≈
(

1 +
i

2
ωa2σ

a + iω1YΦ

)
Φ ≡ Φ + δΦ

where σa are the Pauli matrices and YΦ = +1/2 is the hypercharge assignment. In the
second step we assume infinitesimal transformations, without loss of generality. We have
also suppressed the spacetime dependence in the parameters ωaL, ωY . Acting on the vacuum
and requiring no change,

δ〈Φ〉 =

(
i

2
ωaLσ

a + iωY YΦ

)(
0
v

)
=
i

2

(
(ω1

L − iω2
L)v

(−ω3
L + ωY )v

)
=

(
0
0

)
So, the vacuum is invariant under the gauge transformation with ω1

L = ω2
L = 0 and

ωY = ω3
L ≡ ωQ. Thus, Q = T 3 + Y as we expected.

The gauge transformation of U(1)Q on the Higgs doublet (which is in the fundamental
representation of U(1)Q) is then

eiQωQ
(

φ1 + iφ2

v + φ3 + iφ4

)
= e

i
2
σ3ωQeiYΦωQ

(
φ1 + iφ2

v + φ3 + iφ4

)
=

(
eiωQ 0

0 0

)(
φ1 + iφ2

v + φ3 + iφ4

)
This tells us that, indeed, φ+ = φ1 + iφ2 transforms as an object with Q = +1 under the
EM group. Similarly, v + φ0 = v + φ3 + iφ4 is also in the fundamental representation and
has EM charge = 0. In equations, assuming infinitesimal transformations,

δ(φ1 + iφ2) = iωQ(φ1 + iφ2),

δ(v + φ3 + iφ4) = 0.

The conjugate fields transform like

δ(φ1 − iφ2) = −iωQ(φ1 − iφ2),

δ(v + φ3 − iφ4) = 0.

From linearity we can find the individual transformation properties; subtracting and adding
the above equations we find

δφ1 = −ωQφ2,

δφ2 = ωQφ1,

δφ3 = δφ4 = 0.

From analysis of the gauge boson spectrum we know that there are three mass and EM
charge eigenstates; Z0 and W± ≡ (W1 ∓ iW2)/

√
2, which must eat a Goldstone each in
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order to become massive. The scalar mass matrix reveals that φ1, φ2, φ4 are massless (φ3

becomes the physical Higgs). Thus, the three massless scalars mix in some particular way
into three Goldstone states, with definite EM charges 0,±1, in order to take the roles
of longitudinal polarization states of the gauge bosons. As we will see, there is only one
possibility for each.

Let’s start by finding the state Kiφi (summed over i; Ki are constants and i ∈ {1, 2, 4})
which has Q = 0. In other words,

δ(Kiφi) = Kiδφi = K1(−ωQφ2) +K2(ωQφ1) +K4 · 0
!

= 0,

where, in the last step, the equality is enforced. Clearly, there are no nonzero constants
K1,2 that satisfy this. Then the uncharged Goldstone contains only φ4. K4 is arbitrary
here but fixed to unity by requiring normalized kinetic terms. So, Z0 eats the Goldstone
G0 = φ4.

The positively charged Goldstone is found in the same way, by requiring

δ(Kiφi) = Kiδφi = K1(−ωQφ2) +K2(ωQφ1) +K4 · 0
!

= +iωQ(Kiφi)

Identifying coefficients we learn that K4 = 0, iK1 = K2 and iK2 = −K1 (noting that the
last two conditions are equivalent). So, the Q = +1 state G+, eaten by W+, is K1(φ1+iφ2).
K1 = 1/

√
2 can be seen from requiring normalization.

Finally, G−, which becomes the transverse mode of W−, is found by setting

δ(Kiφi) = Kiδφi = K1(−ωQφ2) +K2(ωQφ1) +K4 · 0
!

= −iωQ(Kiφi)

We find K4 = 0 again, and iK2 = K1 ⇐⇒ iK1 = −K2. So, G− = K1(φ1 − iφ2) =
1√
2
(φ1 − iφ2).
To recapitulate, the three Goldstone modes engendered by the spontaneous breaking

SU(2)L × U(1)Y → U(1)Q are, in terms of the EW gauge eigenstate Higgs fields,

G0 = φ4,

G± =
1√
2

(φ1 ± iφ2).

Since the Lagriangian is invariant under global phase transformations, we are free to rede-
fine

G+ → ei3π/2G+ = −iG+ = φ2 − iφ1,

G− → e−i3π/2G− = iG− = φ2 + iφ1. (1.19)

We can also find the Goldstones by first finding the generators of the spontaneously
broken part of G. The gauge-covariant derivative of the SM is

Dµ = ∂µ − igW i
µT

i − ig′Y Bµ,
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where the SU(2) generators are half the Pauli matrices, T i = σi/2, and the hypercharge
Y generates the U(1) transformations. Let us write this in terms of the mass eigenstate
fields. These are obtained from diagonalization of the gauge boson mass matrices: W 1,2

µ

are already mass eigenstates; the photon and Z are

Aµ =
1√

g2 + g′2
(g′W 3

µ + gBµ),

Z0
µ =

1√
g2 + g′2

(gW 3
µ − g′Bµ).

We get

Dµ = ∂µ − igT 1W 1
µ − igT 2W 2

µ

− i 1√
g2 + g′2

(g2T 3 − g′2Y )Z0
µ − i

gg′√
g2 + g′2

(T 3 + Y )Aµ. (1.20)

Each term in Eqn. (1.20) is a product of −i times a charge, a physical gauge field, and a
thereto associated generator. We can immediately read off Q = T 3 + Y as the generator
of the EM symmetry, again, and e = gg′/

√
g2 + g′2 as the elementary electric charge.

Furthermore, the broken generators (i.e. those corresponding to the degrees of sym-
metry which do not live on as U(1)Q after spontaneous symmetry breaking) are T 1, T 2

and (g2T 3 − g′2Y ). As we found in Section 1.3.2, complex unity times a broken generator
transforms the vacuum in the corresponding Goldstone directions. This allows us to find
the Goldstone bosons corresponding to each generator and gauge boson. We get, for the
first broken generator,

iT 1〈Φ〉 =
i

2

(
0 1
1 0

)(
0
v

)
=

(
iv

2

0

)
.

This tells us that the Goldstone mode corresponding to the generator T 1, and thus eaten
by W 1, is the complex part of the top component of Φ, defined in Eqn. (1.18), i.e. φ2.
Similarly,

iT 2〈Φ〉 =
i

2

(
0 −i
i 0

)(
0
v

)
=

(
v
2

0

)
and

i(g2T 3 − g′2Y )〈Φ〉 =
i

2

(
g2

(
1 0
0 −1

)(
0
v

)
− g′2

(
0
v

))
=

(
0

−iv
2
(g2 + g′2)

)
tells us that the Goldstones eaten by W 2 and Z0 are φ1 and φ4 respectively.

Now, of course, we prefer to express the mass eigenstates W 1,2 as the normalized,
complex charge eigenstate fields W± = (W 1 ∓ iW 2)/

√
2. This implies that the Goldstone

eaten by W± is
G± = (φ2 ∓ iφ1)/

√
2.
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Consulting Eqn. (1.19), we see that the results agree.
Finally, we will make one observation which will speed up finding the generators cor-

responding to the physical gauge bosons, as per Eqn. (1.20). The covariant derivative
contains terms of the form complex unity times a gauge coupling, a generator and a gauge
field:

Dµ ⊃ iT aW a, (1.21)

where T a = gata (no sum); ga and ta are the corresponding gauge coupling and generator
(in some representation), respectively, to the (gauge eigenstate) gauge boson W a. We

wish to express this in terms of physical gauge fields Ŵ . Let the rotation into physical
eigenstates be achieved by

Ŵ a = RabW b

where R is an orthogonal4 matrix. Then, the gauge eigenstates are

W b = (RT )baŴ a = RabŴ a

which implies (renaming a, b)

W a = RbaŴ b.

Plugging this into Eqn. (1.21), we find that

Dµ ⊃ iT̂ bŴ b,

where now T̂ b = RbaT a (recalling that T a = gata without summing). Thus, the generators
mix exactly in the same way as the gauge bosons, only multiplied by the gauge coupling.
In other words, to find out how the generators mix, we need only look at how the gauge
bosons mix into physical states and replace the gauge eigenstate gauge fields by the gauge
coupling times the corresponding generator.

As an example, consider the Standard Model Z boson. We know from the gauge boson
mass spectrum that

Z0
µ =

1√
g2 + g′2

(gW 3
µ − g′Bµ).

Then, according to our prescription, the generator corresponding to this physical gauge
boson should be

TZ =
1√

g2 + g′2
(g(gT 3)− g′(g′Y )).

We can extract the normalization factor 1/
√
g2 + g′2 and call it a coupling, leaving (g2T 3−

g′2Y ) as the generator, which is exactly what we found in Eqn. (1.20).

4It can be shown that any real, symmetric matrix can be diagonalized by an orthogonal matrix. The
gauge boson mass matrix is real since its elements come from the square of the gauged scalar kinetic terms
and obviously symmetric.

22



1.5 SARAH

SARAH [10, 11] is a Mathematica [17] package which calculates masses, mixings and
vertices for gauge theories (supersymmetric and non-supersymmetric). It can also give
tadpole equations and the renormalization group equations (RGEs) for all parameters up
to the two-loop level. The model of choice is input by writing and loading so-called model,
particle and parameter files. These contain the necessary information about the model
structure: The model file encodes gauge symmetries; particle content and representations in
the different eigenbases; superpotential (for SUSY theories) or Lagrangian (for non-SUSY
models). The particle and parameter files, meanwhile, contain less crucial information
regarding the particles and parameters of the model, such as output names and descriptions.

SARAH currently comes with a selection of around 50 models already constructed, most
of which are extensions of the SM. If one wishes to use SARAH to calculate features of a
model not included by default, constructing a model file manually is mostly straightforward.
We will give a brief overview of the required steps in the following section.

1.5.1 The anatomy of a SARAH model file

In order to make this thesis somewhat self-contained, we will give a short outline of the re-
quired sections of a non-supersymmetric model file. For detailed instructions, we obviously
refer to the SARAH manual [11].

Gauge groups. First, the gauge group of the theory is typically specified as a product of
U(1) and SU(N) groups. For each such group, quantum numbers (such as hypercharge or
colour) and dimension should be given. We can also choose which group indices should be
expanded over in calculations. The gauge bosons for each group are added automatically.

Matter fields. Next, we must write the (Weyl spinor) fermions and scalars of the theory,
including their charges under each gauge group.

Scalar potential and Yukawa Lagrangian. These two parts of the model’s Lagrangian
must be manually supplied. SARAH understands how to build invariants out of the scalar
and fermion fields, since their representations are known, and as such can contract the
indices without them having to be written out explicitly. For example, SARAH would
understand a term such as HH† for the SM Higgs, since there is only one way of con-
tracting the (implicit) indices; as an SU(2) product. However, in the event that there are
several ways of constructing a gauge invariant, the desired contraction must be written out
explicitly in the model file.

Vacuum structure. The vacuum structure must be supplied for all scalars which obtain
a nonzero VEV.
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Gauge and matter sector mixing. While SARAH can calculate the mixing matrices,
we must tell the program which particles actually mix. This is done by supplying the gauge
eigenstates that mix, and defining mass eigenstate and mixing matrix variables. SARAH
then computes the latter. This must be done for fermions and scalars as well as for the
gauge bosons.

Dirac/Weyl spinor structure. Lastly, we must input the way in which Dirac spinors
should be constructed from the Weyl fields previously defined.

Examples of model files are included, as mentioned, in the SARAH package download
[11]. Our model file for the MLRM is included, for reference, in Appendix A.
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2 The minimal left-right-symmetric model

Left-right-symmetric models containing the gauge group SU(2)L⊗SU(2)R⊗U(1)B−L have
been studied extensively since the 1970’s [6–8, 18]. The extended symmetry in the elec-
troweak sector leads to new phenomenology and several attractive theoretical features, not
least as an intermediate effective theory between the SM and some higher-scale unified
theory. We will consider the so-called Minimal Left-Right-Symmetric Model (MLRM),
which is an gauge-group extension of the Standard Model to SU(3)C⊗SU(2)L⊗SU(2)R⊗
U(1)B−L. We take the transformation between L and R fields to be parity5, and impose
parity invariance before spontaneous breaking down to U(1)Q. The latter is achieved by
assigning VEVs to selected components of the triplet and bi-doublet Higgs fields.

We will begin by introducing the gauge group, fermion and gauge boson content in
Section 2.1. In Section 2.2 we verify that the model is gauge anomaly-free. Section 2.3
treats the Higgs sector and symmetry breaking. We introduce the Higgs fields, calculate
the gauge boson mass spectrum, and identify the Goldstones associated with breaking the
MLRM gauge group to the SM. In Section 2.4 we write the scalar potential and, having
solved the tadpole equations, obtain the scalar mass spectrum. Section 2.5 contains an
analysis of the Yukawa sector. Furthermore, the entire Lagrangian is then put into the
physical basis and presented in 2.6. Finally, we give a brief phenomenological overview
and a summary in Sections 2.7 and 2.8, respectively.

All calculations have been performed in Mathematica. An MLRM model file was cre-
ated for use with SARAH, and the results of the manual calculations were used to verify
the correct construction of the model file. All results agree between the methods. There
is also complete agreement with the literature in all results unless noted otherwise.

2.1 Fermion and vector particle content

2.1.1 Fermions

The fermion fields are assigned to the doublets

LiL =

(
ν
e

)i
L

, LiR =

(
ν
e

)i
R

, Qi
L =

(
u
d

)i
L

, Qi
R =

(
u
d

)i
R

.

where i is a family index. These represent, respectively, SU(2)L ⊗ SU(2)R ⊗ U(1)B−L as

(2,1,−1

2
), (1,2,−1

2
), (1,2,

1

6
), (2,1,

1

6
). (2.1)

Thus, left- (right-) handed fermions occupy left-handed doublets (singlets) and right-
handed singlets (doublets). The third component of “left-handed weak isospin” T 3

L, act-
ing as the charge of SU(2)L, is straightforwardly given a “right-handed” analogue in T 3

R.

5It is also possible to define charge conjugation as the transformation that takes fields from L to R.
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Figure 2.1: The triangle diagrams which spoil gauge invariance for chiral theories [12].

The generator of U(1)B−L is simply the half the difference in baryon and lepton num-
ber, (B − L)/2. The factor 1/2 is a matter of convention. When this gauge group is
supplemented by (unbroken) SU(3)C , colour charge is assigned as per the SM.

2.1.2 Gauge bosons

The gauge boson spectrum (before breaking) is also a simple extension of the SM: We have
two triplets,

W iµ
L =

W 1µ

W 2µ

W 3µ


L

, W iµ
R =

W 1µ

W 2µ

W 3µ


R

,

the first transforming as the adjoint (singlet) under SU(2)L(R), and vice versa for the
second. Additionally, a U(1)B−L gauge boson exists, called Bµ in analogy with the SM.

Then, the gauge-covariant derivative is

Dµ = ∂µ − igLW i
LµT

i
L − igRW i

RµT
i
R − igB−L

(B − L)

2
Bµ (2.2)

where TL,R are just the Pauli matrices in the fundamental representation.
Furthermore, gL = gR is commonly enforced if a parity-symmetric theory is desired.

We will indeed make this identification in the following.

2.2 Gauge anomaly cancellation

It can be shown that diagrams of the type shown in Fig. 2.1, acting as corrections to
the three-gauge boson couplings, may spoil gauge invariance in chiral theories [12]. In
addition, there is similar, gravitational, anomalies may occur when gravitons replace the
gauge bosons at the vertices [12]. Thus, we must ensure that, as in the SM, all contributions
from such diagrams cancel. We will see how this happens below.

The diagram in Fig. 2.1 is proportional to the group-theoretic expression

tr[(−1)χT a{T b, T c}], (2.3)

where the T ’s are the generators of the corresponding gauge currents (see Fig. 2.1) [12].
The factor (−1)χ (denoted γ5 in [12]) is equal to −1 (+1) for left- (right-) handed fermions,
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SU(3)

SU(2)

(e)

U(1)

SU(3)

SU(3)

(f)

SU(2)

SU(2)

SU(2)

(g)

SU(2)

SU(3)

SU(2)

(h)

SU(2)

SU(3)

SU(3)

(i)

U(1)

gravity

gravity

(j)

Figure 2.2: The complete set of potentially anomalous triangle diagrams.

while the commutator simply expresses the need to count diagrams with fermions running
in both directions in the loops.

Diagrams that couple three bosons of non-chiral (left-right-symmetric) interactions, i.e.
gravitons or gluons, do not contribute. So, for our theory of SU(3)C⊗SU(2)R⊗SU(2)L⊗
U(1)B−L, the potentially troublesome diagrams for consideration are those in Fig. 2.2. We
will address them separately, essentially following Section 20.2 in Ref. [12].

Any diagram coupling exactly one SU(2) or SU(3) current to any others are propor-
tional to the trace of one Pauli or Gell-Mann matrix (since the trace in Eqn. (2.3) is over
a tensor product it separates: trA⊗B = trA trB). These are Lie algebra generators and
thus traceless, from which it follows that no such diagram (Fig. 2.2 (b), (d), (e), (h), (i))
can contribute.

Meanwhile, the diagram in Fig. 2.2(g) is also group-theoretically trivial, since the
SU(2) generators satisfy {σa, σb} ∝ δab, implying again that Ag ∝ tr[σc] = 0, where, in
the notation we now adopt, Ax is the amplitude of the diagram in Fig. 2.2(x).

The remaining, nontrivial amplitudes are thus Aa, Ac, Af and Aj. In the case of Ac, the
two SU(2) currents may be either both SU(2)L or both SU(2)R. The diagram connecting
SU(2)L and SU(2)R to U(1) is not a physical process since no fermion couples to both
currents SU(2)L and SU(2)R currents.

The (U(1)B−L)3 diagram Aa is simply proportional to tr[(B−L
2

)3], where we interpret
the trace as a sum over the quantum number (B − L)/2 cubed, for all fermions. We must
also keep in mind that left-handed fermions enter with a minus sign due to the (−1)χ

factor. Then we have

Aa ∝ tr

[(
B − L

2

)3
]

= −2

(
−1

2

)3

+ 2

(
−1

2

)3

− 3 · 2
(

1

6

)3

+ 3 · 2
(

1

6

)3

= 0
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according to the assignments in Eqn. (2.1).
The anomaly Ac, with both SU(2) currents either L or R, is proportional to

tr[σaσb(B − L)/2] ∝ δab
∑
fL,R

(B − L)fL,R

by properties of the Pauli matrices. The sum runs over only L (R) fermions for the
(SU(2)L)2 ((SU(2)R)2) diagram. We also count each quark three times for colour, and, as
usual, L-fermion contributions are subtracted. Thus,

ALc ∝
∑
fL

(B − L)fL
2

= −2

(
−1

2

)
− 3 · 2

(
1

3

)
= 0

and

ARc ∝
∑
fR

(B − L)fR
2

= 2

(
−1

2

)
+ 3 · 2

(
1

6

)
= 0.

For Af , which couples two SU(3)C currents to U(1)B−L, we have

tr[λaλb(B − L)/2] =
1

4
δab
∑
q

(B − L)q ∝ −3 · 2
(

1

6

)
+ 3 · 2

(
1

6

)
= 0,

where, naturally, only quarks run in the loops.
Finally, the Aj diagram is proportional to the trace over the (B − L)/2 matrix,

Aj ∝ tr[(B − L)/2] = −2

(
1

2

)
+ 2

(
1

2

)
− 3 · 2

(
1

6

)
+ 3 · 2

(
1

6

)
= 0.

Thus, we conclude that there exist no chiral gauge anomalies or gravitational anomalies
in the theory. The analysis done in SARAH confirms this result.

2.3 Higgs sector and symmetry breaking

2.3.1 Higgs fields and vacuum structure

We wish, as in the SM, to spontaneously break SU(2)L ⊗ U(1)Y → U(1)Q. Thus, we
must first break SU(2)R ⊗ U(1)B−L → U(1)Y , requiring an extended Higgs sector. For
phenomenological reasons we require that this happens at a higher scale. This is to ensure
a high mass for the new (apparently hidden) WR, ZR bosons; we discuss this further in
Section 2.7.

The breaking of the right-handed symmetry can, in principle, be performed by intro-
ducing two new Higgs doublets [19]. However, we instead introduce two triplet Higgs fields,
conveniently represented by

T iLδ
i
L ≡ ∆L =

(
δ+
L /
√

2 δ++
L

δ0
L −δ+

L /
√

2

)
, T iRδ

i
R ≡ ∆R =

(
δ+
R/
√

2 δ++
R

δ0
R −δ+

R/
√

2

)
. (2.4)
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This is done to open the possibility of Majorana mass terms for the right-handed neutrinos
via the see-saw mechanism [20] (see Section 2.7). These fields transform as the repre-
sentations (3,1, 1) and (1,3, 1), respectively, of the SU(2)L ⊗ SU(2)R ⊗ U(1)B−L gauge
group.

In order to spontaneously break SU(2)L ⊗ U(1)Y down to U(1)Q, we introduce the
bi-doublet

Φ =

(
φ0

1 φ+
1

φ−2 φ0
2

)
,

belonging to the (2,2*, 0) representation6.
These representational assignments mean that the Higgs fields transform under UL,R ∈

SU(2)L,R as

Φ→ ULΦU †R

∆L → UL∆LU
†
L

∆R → UR∆RU
†
R (2.5)

In order to spontaneously break the symmetries, as we will see in the next section, we
must chose appropriate Φ and ∆ vacuum structure. Since we wish to end up with U(1)Q
unbroken, the neutral Higgs field components gain VEVs7. We define them by

〈Φ〉 =
1√
2

(
keiαk 0

0 k′eiαk′

)
,

〈∆L〉 =
1√
2

(
0 0

vLe
iβL 0

)
, 〈∆R〉 =

1√
2

(
0 0

vRe
iβR 0

)
.

Since they are in general complex, there are four phases. However, we may gauge-transform
away two of them. This owes to the transformation properties in Eqn. (2.5): The vacua
are invariant (by construction) under the U(1)Q transformation. The EM generator is
Q = T 3

R + T 3
L + (B − L)/2, as we will find in Section 2.3.4 (Eqn. (2.11)). Let us then

consider the three operators that commute with Q; T 3
L,R and (B−L)/2. Under these gauge

transformations, the vacua transform as

〈Φ〉 → eiT
3
LωL〈Φ〉e−iT 3

RωR ,

〈∆L〉 → eiωB−LeiT
3
LωL〈∆L〉e−iT

3
LωL ,

〈∆R〉 → eiωB−LeiT
3
RωL〈∆R〉e−iT

3
RωR ,

where we have plugged in (B−L)/2 = 1 for the triplet fields. This implies that the phases
transform as

αk → αk −
1

2
ωL +

1

2
ωR,

6Note that for SU(2), 2*=2.
7If the vacuum is not invariant under U(1)Q, we do not end up with EM charge conservation or massless

photons.
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αk′ → αk′ +
1

2
ωL −

1

2
ωR,

βL → βL + ωB−L − ωL,

βR → βR + ωB−L − ωR.

Since two independent combinations of the parameters appear in the above transforma-
tions, two phases can be rotated away [21] . Thus, we remove two phases, conventionally
leaving

〈Φ〉 =
1√
2

(
k 0
0 k′eiαk′

)
,

〈∆L〉 =
1√
2

(
0 0

vLe
iβL 0

)
, 〈∆R〉 =

1√
2

(
0 0
vR 0

)
. (2.6)

There must exist a distinct hierarchy between the VEVs of the Higgs fields, both in order
to hide the experimentally unobserved gauge bosons associated with SU(2)R, and to match
other phenomenology (see Section 2.7); we require vR � k, k′ � vL, with

√
k2 + k′2 lying

around the EW scale. The R-breaking VEV vR is usually taken to be at least 1010 GeV
[20].

The gauged Higgs sector Lagrangian, without the scalar potential (treated in Section
2.4), is simply

L Higgs = Tr[(Dµ∆L)†(Dµ∆L)] + Tr[(Dµ∆R)†(Dµ∆R)]+

+ Tr[(DµΦ)†(DµΦ)] (2.7)

with Dµ is given by Eqn. (2.2).

2.3.2 Gauge boson masses

As in the SM, the gauge boson mass eigenstates do not coincide with the weak eigenstates.
Acting on the Higgs multiplets with the covariant derivative we find

Dµ∆L,R = ∂µ∆L,R −
ig

2

[
W i
L,Rµσ

i,∆L,R

]
− igB−LBµ∆L,R,

where we have set gL = gR ≡ g, and plugged in B − L = 2 for the ∆ fields, and

DµΦ = ∂µΦ− ig

2

(
W i
Lµσ

iΦ− ΦW i
Rµσ

i
)
.

Using the above in the gauged Lagrangian (2.7), and evaluating at the vacuum with
the Higgs VEVs (2.6), we obtain, after some algebra, the W mass term

LW±

mass = (W−
L W−

R )

(
1
4
g2(k2 + k′2 + 2v2

L) −1
2
g2kk′e−iαk′

−1
2
g2kk′eiαk′ 1

4
g2(k2 + k′2 + 2v2

R)

)(
W+
L

W+
R

)
.
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We use the ubiquitous notation W±
L,R = 1√

2
(W 1

L,R ∓ iW 2
L,R), suppressing spacetime indices

from now on. We also rename gB−L to g′ and introduce k2
± = k2±k′2 for notational brevity.

Clearly, since the mass matrix is not diagonal, the W±
L,R states are not mass eigenstates.

Diagonalizing and letting W±
1,2 denote the mass eigenstates, we find

M2
W1,2

=
g2

4

[
k2 + k′2 + v2

L + v2
R ∓

√
(v2
L − v2

R)
2

+ 4k2k′2
]
.

Invoking the hierarchy vR � k, k′ � vL, mentioned above, we find

M2
W1
≈ g2

4
k2

+

(
1− 2k2k′2

k2
+v

2
R

)
,

M2
W2
≈ g2

2
v2
R.

Note that we have expressed the W1 mass-squared in the form of the correct SM expression
plus as small correction. In other words, the gauge eigenstates are also approximate mass
eigenstates, and since the expressions for currents, etc., are simpler in the W±

L,R basis, it is
often used. The mixing is given by(

W±
L

W±
R

)
=

(
cos ζ − sin ζeiλ

sin ζe−iλ cos ζ

)(
W±

1

W±
2

)
.

The phase is λ = −αk′ (which is often set to 0, see the following sections) while the mixing
angle is given by [21]

tan ζ = −kk
′

v2
R

,

which is clearly suppressed.
As mentioned above, the W 3’s mix with the B field to produce ZL,R and γ, in analogy

with the SM. The mass part of the Lagrangian is,

L
W 0
L,R,B

mass =
1

2

(
W 3
Lµ W 3

Rµ Bµ

)
M2

0

W 3µ
L

W 3µ
R

Bµ


where the mass matrix is

M2
0 =

g2

4
(k2

+ + 4v2
L) −g2

4
k2

+ −gg′v2
L

−g2

4
k2

+
g2

4
(k2

+ + 4v2
R) −gg′v2

R

−gg′v2
L −gg′v2

R g′2(v2
L + v2

R)

 .

Again, diagonalizing in the vL → 0 limit, we obtain the mass eigenvalues

MA = 0,

M2
Z1,2

=
1

4

[
g2(k2

+ + 2v2
R) + 2g′2v2

R ∓
√
g4k4

+ + 4v4
R(g2 + g′2)2 − 4g2g′2v2

Rk
2
+

]
.
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Again in the limit of vR large, the latter two are

M2
Z1
≈

k2
+g

2

4 cos2 θW

(
1−

k2
+

4v2
R cos4 θY

)
,

M2
Z2
≈ g2v2

R.

where we have pre-emptively plugged in the expressions introduced below for the mixing
angles. Once again, the Z1 mass is equal to the SM value plus a small correction. The
mass matrix is diagonalized by the transformation (in the vR � k+ limit)A

Z1

Z2

 =

 sW cW sY cW cY
−cW sW sY sW cY

0 −cY sY

W 3
L

W 3
R

B


where the mixing angles are defined via

sW ≡ sin θW =
g′√

g2 + 2g′2
,

cW ≡ cos θW =

√
g2 + g′2

g2 + 2g′2
,

sY ≡ sin θY =
g′√

g2 + g′2
,

cY ≡ cos θY =
g√

g2 + g′2
. (2.8)

Thus, the weak eigenstates expressed in physical fields are

W 0
L = sWA− cWZ1,

W 0
R = cW sYA+ sW sYZ1 − cYZ2,

B = cW cYA+ sW cYZ1 + sYZ2. (2.9)

The mixing can be thought of as occurring in two steps: first, the neutral components
of the W field mix with B to produce the two weak eigenstate fields ZL,R and the photon
A. Then, the weak eigenstate ZL,R mix to produce the mass eigenstates Z1,2

Furthermore, the hierarchy vR � k+ means that the latter mixing is small, and, as with
the charged bosons, the electroweak eigenstates ZL,R (where ZL = Z is identified with the
Standard Model gauge boson) are almost mass eigenstates.

2.3.3 SU(2)R ⊗ U(1)B−L → U(1)Y Goldstone bosons

We now wish to explicitly find the Goldstone modes associated with the breaking of the
MLRM gauge group down to the Standard Model. The strategy is to find the generators
which are spontaneously broken and apply them to the vacuum to find the Goldstone
directions, as demonstrated in Section 1.4.
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We will first consider the breaking of SU(2)R ⊗ U(1)B−L to U(1)Y only, taking k =
k′ = vL = 0, vR 6= 0. This will allow us to find the three Goldstones eaten by the new,
heavy W±

R , Z2 gauge bosons. While the groups involved in this breaking look the same as
those involved in the SM symmetry breaking, an important difference is that the vacuum
∆R now transforms as the adjoint under SU(2)R. The vacuum triplet (δ1, δ2, δ3) is usually
put in the form (2.4):

∆R = δiRσ
i/2 =

(
δ+
R/
√

2 δ++
R

δ0
R −δ+

R/
√

2

)
.

Thus, the components are

δ1
R = δ++

R + δ0
R,

δ2
R = i(δ++

R − δ0
R),

δ3
R =
√

2δ+
R . (2.10)

The vacuum expectation values are 〈δ0
R〉 = vR/

√
2 and 〈δ+

R〉 = 〈δ++
R 〉 = 0.

We begin by finding the broken generator. Requiring the vacuum 〈∆R〉 does not change
under the transformation,

δ〈δaR〉 = −εabcωbRδcR + i
(B − L)δR

2
ωB−Lδ

a
R

!
= 0.

The first and second terms encode the behaviour of the δR components under infinitesimal
SU(2)R and U(1)B−L transformations respectively. The B − L charge is 2 for all the δR’s.
Solving these equations for each a and real ω’s, we obtain

ω1
R = ω2

R = 0,

ω3
R = ωB−L ≡ ω.

In other words, the gauge transformation under which the vacuum is invariant is generated
by Y ≡ T 3

R + B−L
2

, where T 3
R is the third generator of SU(2)R, represented in the adjoint

by −iε3bc.
Using the prescription developed in Section 1.4, we can find the broken generators by

considering the gauge boson mixing. Considering only the breaking SU(2)L ⊗ SU(2)R ⊗
U(1)B−L → SU(2)L ⊗ U(1)Y , the only massive gauge bosons come from the mixing of the
SU(2)R fields WR with the U(1)B−L field B as

W 1
R

W 2
R

AR
ZR

 =
1√

g2 + g′2


√
g2 + g′2 0 0 0

0
√
g2 + g′2 0 0

0 0 g′ g
0 0 −g g′




W 1
R

W 2
R

W 3
R

BB−L


where g (g′) is the SU(2) (U(1)) gauge coupling. The field AR, which is massless, corre-
sponds, according to our prescription, to the generator

gg′√
g2 + g′2

(
T 3
R +

B − L
2

)
.
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This is just proportional to the hypercharge, an unbroken symmetry (since the gauge field
remains massless), as we have already seen. As a sanity check, let us confirm this result
by computing the result of this operator acting on the vacuum:

i

(
T 3
R +

B − L
2

)
vR√

2

 1
−i
0

 ∝
 0 1 0
−1 0 0
0 0 0

+ i

 1
−i
0

 = 0,

as we suspected.
The three broken generators are then T 1

R, T
2
R and (−g2T 3

R + g′2B−L
2

). To find the Gold-
stone modes, we apply these generators to the vacuum. From (2.10), we see that the
vacuum is 〈δ1

R

δ2
R

δ3
R

〉 =
vR√

2

 1
−i
0

 .

As mentioned, T 3
R is represented by −iε3bc in the adjoint. Applying i times this generator

to the vacuum, we find

i

(
−g2T 3

R + g′2
B − L

2

)
vR√

2

 1
−i
0

 =
vR√

2

−g2

 0 1 0
−1 0 0
0 0 0

+ ig′2

 1
−i
0


=
vR(g2 + g′2)√

2

i1
0

 .

The Goldstone mode corresponding to this broken generator, and eaten by ZR, is then
proportional to (Im δ1

R + Re δ2
R), or, using Eqn. (2.10) and normalizing, Im δ0

R.
The two Goldstones corresponding to W 1,2

R are found from

ig

0 0 0
0 0 −i
0 i 0

 vR√
2

 1
−i
0

 =
gvR√

2

0
0
i


and

ig

 0 0 i
0 0 0
−i 0 0

 vR√
2

 1
−i
0

 =
gvR√

2

0
0
1


to be Im δ3

R =
√

2 Im δ+
R and Re δ3

R =
√

2 Re δ+
R , respectively. In complete analogy to the

SM, the W 1,2
R mass eigenstates are put into charge eigenstates W±

R = 1√
2
(W 1

R∓W 2
R) (which

are approximate mass eigenstates; see Section 2.3.2). Thus, calling the Goldstone eaten by
W±
R G±R, we have

G+
R = Im δ+

R − iRe δ+
R ,

G−R = Im δ+
R + iRe δ+

R .
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As in the SM case discussed in Section 1.4, we are also free to rotate the Goldstone fields
by a phase; the Lagrangian is invariant. A prudent choice is e±iπ/2, yielding the redefined
Goldstones

G+
R = Re δ+

R + i Im δ+
R = δ+

R ,

G−R = Re δ+
R − i Im δ+

R = δ−R .

2.3.4 SU(2)L ⊗ U(1)Y → U(1)Q Goldstone bosons

Next, let us consider the breaking of SU(2)L ⊗ U(1)Y → U(1)Q by means of assigning the
Higgs bi-doublet

Φ =

(
φ0

1 φ+
1

φ−2 φ0
2

)
the VEV

〈Φ〉 =
1√
2

(
k 0
0 k′

)
.

As we saw, the hypercharge is given by Y = T 3
R + B−L

2
. Let us compute how Φ transforms

under this symmetry. We know that, since Φ is in the anti-fundamental representation
of SU(2)R, Φ → ΦU †R for an SU(2)R gauge transformation UR. Since (B − L)Φ = 0, Φ
transforms as

Φ→ Φe−iωY T
3
R

under a hypercharge transformation. This is, plugging in the generator T 3
R,

Φ→
(
φ0

1 φ+
1

φ−2 φ0
2

)(
e−iωY /2 0

0 e+iωY /2

)
or

φ0
1 → e−iωY

1
2φ0

1,

φ−2 → e−iωY
1
2φ−2 ,

φp1 → e+iωY
1
2φp1,

φ0
2 → e+iωY

1
2φ0

2.

So, we see that Φ seems to split into two doublets,

Φ1 =

(
φ0

1

φ−2

)
, Y = −1

2

and

Φ2 =

(
φ+

1

φ0
2

)
, Y = +

1

2
.

To identify the broken generators, we need the gauge boson mixings. These come from the
Lagrangian terms

L ⊃ Tr |DµΦ1|2 + Tr |DµΦ2|2,
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evaluated at the vacuum, where

DµΦ1,2 =

(
−ig

2
W a
Lσ

a ∓ ig′

2
BY

)
Φ1,2.

The mixing is identical to what occurs in the SM:
W 1
L

W 2
L

A
Z

 =
1√

g2 + g′2


√
g2 + g′2 0 0 0

0
√
g2 + g′2 0 0

0 0 g′ g
0 0 −g g′



W 1
L

W 2
L

W 3
L

BY


Then, the broken generators corresponding toW 1,2

L and Z are gT 1
L, gT 2

L and (−g2T 3
L + g′2Y ),

respectively. The prescription is to apply i times these generators to the vacua

〈Φ1〉 =

(
k/
√

2
0

)
and

〈Φ2〉 =

(
0

k′/
√

2

)
.

The resultant of these directions in field space are parallel to the Goldstone modes.
Let us first find the Goldstone eaten by Z. We have

i(−g2T 3
L + g′2Y )

(
k/
√

2
0

)
= i

(
− g2

2
√

2

(
1 0
0 −1

)
− g′2

2
√

2

)(
k
0

)
= −g

2 + g′2

2
√

2

(
ki
0

)
and

i(−g2T 3
L + g′2Y )

(
0

k′/
√

2

)
= i

(
− g2

2
√

2

(
1 0
0 −1

)
+

g′2

2
√

2

)(
0
k′

)
= −g

2 + g′2

2
√

2

(
0
−k′i

)
.

Adding these directions and normalizing, we find the Goldstone boson

G0
1 =

1√
k2 + k′2

(k Imφ0
1 − k′ Imφ0

2)

= Im

[
1√

k2 + k′2
(kφ0

1 + k′φ0∗
2 )

]
≡ Imφ0

−.

It remains to find the Goldstones eaten by W 1,2
L , and, in turn, the EM charge eigenstates

W±
L . The Goldstone corresponding to W 1, G1

L is in the direction of

igT 1
L〈Φ〉 =

ig

2
√

2

(
0 1
1 0

)(
k 0
0 k′

)
=

g

2
√

2

(
0 k′i
ki 0

)
,
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i.e. proportional to k′ Imφ+
1 + k Imφ−2 . The W 2 Goldstone G2

L, similarly goes as

igT 2
L〈Φ〉 =

ig

2
√

2

(
0 −i
i 0

)(
k 0
0 k′

)
=

g

2
√

2

(
0 k′

−k 0

)
,

or is proportional to k′Reφ+
1 −kReφ−2 . Constructing the charge eigenstates W± = (W 1∓

iW 2)/
√

2, we obtain

G+
L =

1√
2

(G1
L − iG2

L) ∝ (k′ Imφ+
1 + k Imφ−2 )− i(k′Reφ+

1 − kReφ−2 )

= eiπ/2(φ+
1 − iφ+

2 )

and

G−L =
1√
2

(G1
L + iG2

L) ∝ (k′ Imφ+
1 + k Imφ−2 ) + i(k′Reφ+

1 − kReφ−2 )

= e−iπ/2(φ−1 − iφ−2 ).

We have rotated the fields by e±iπ/2 in order to agree with the expressions given in Ref.
[18]. Thus, the Goldstones eaten by W±

L , rotated and properly normalized, are (recalling
k+ ≡

√
k2 + k′2)

G±L =
1

k+

(φ±1 − iφ±2 ).

Since we found in the previous section that Y = T 3
R + B−L

2
, we now see that the EM

charge generator is

Q = T 3
L + Y = T 3

L + T 3
R +

B − L
2

. (2.11)

As a final consistency check, let us verify that this operator indeed keeps the vacuum
invariant. We find the changes in 〈Φ1,2〉 under this transformation to be

i(T 3
L + Y )〈Φ1〉 =

(
1

2

(
1 0
0 −1

)
− 1

2

)(
k/
√

2
0

)
=

(
0
0

)
and

i(T 3
L + Y )〈Φ2〉 =

(
1

2

(
1 0
0 −1

)
+

1

2

)(
0

k′/
√

2

)
=

(
0
0

)
just as we expected.

2.4 Scalar potential and Higgs mass spectrum

In construction of the Higgs potential we will only assume parity invariance (and, of course,
renormalizability). In its most general form under these restrictions, the potential is [18]
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V (∆L,∆R,Φ) = −µ2
1 Tr Φ†Φ− µ2

2

[
Tr Φ̃Φ† + Tr Φ̃†Φ

]
− µ2

3

[
Tr ∆L∆†L + Tr ∆R∆†R

]
+ λ1(Tr Φ†Φ)2 + λ2

[
(Tr Φ̃Φ†)2 + (Tr Φ̃†Φ)2

]
+ λ3 Tr Φ̃Φ†Tr Φ̃†Φ + λ4 Tr Φ†Φ

[
Tr Φ̃Φ† + Tr Φ̃†Φ

]
+ ρ1

[
(Tr ∆L∆†L)2 + (Tr ∆R∆†R)2

]
+ ρ2

[
Tr ∆L∆L Tr ∆†L∆†L + Tr ∆R∆R Tr ∆†R∆†R

]
+ ρ3 Tr ∆L∆†L Tr ∆R∆†R

+ ρ4

[
Tr ∆L∆L Tr ∆†R∆†R + Tr ∆†L∆†L Tr ∆R∆R

]
+ α1 Tr Φ†Φ

[
Tr ∆†L∆L + Tr ∆†R∆R

]
+
[
α2e

iδ
[
Tr Φ̃Φ†Tr ∆L∆†L + Tr Φ̃†Φ Tr ∆R∆†R

]
+ h.c.

]
+ α3(Tr ΦΦ†∆L∆†L + Tr Φ†Φ∆R∆†R)

+ β1(Tr Φ∆RΦ†∆†L + Tr Φ†∆LΦ∆†R)

+ β2(Tr Φ̃∆RΦ†∆†L + Tr Φ̃†∆LΦ∆†R)

+ β3(Tr Φ∆RΦ̃†∆†L + Tr Φ†∆LΦ̃∆†R), (2.12)

where Φ̃ = σ2Φ∗σ2 is the charge conjugated field. The parameters µ2
1,2,3, λ1,2,3,4, ρ1,2,3,4,

α1,2,3 and β1,2,3 are all real, except α2 which may be complex, indicated explicitly above
by the inclusion of the (CP-violating) phase δ. We will treat the case where there is no
explicit or spontaneous CP violation (real scalar potential, δ = 0, and αk′ = 0); referred to
in the literature as the manifest left-right-symmetric limit. We define normalized real and
imaginary parts of the neutral fields,

φ0
1,2 =

1√
2

(φ0r
1,2 + iφ0i

1,2)

and analogously for δ0
L,R.

The potential is, after spontaneous symmetry breaking, extremal at the VEVs (2.6).
This yields six tadpole equations,

∂V

∂φ0r
1

=
∂V

∂φ0r
2

=
∂V

∂δ0r
R

=
∂V

∂δ0r
L

=
∂V

∂φ0i
2

=
∂V

∂δ0i
L

= 0.
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The first four equalities, evaluated at the VEVs, together imply

µ2
1 = [2vLvR(β2k

2 − β3k
′2) + (v2

L + v2
R)(α1k

2
− − α3k

′2)]/(2k2
−) + k2

+λ1 + 2kk′λ4,

µ2
2 = [vLvR(β1k

2
− − 2kk′(β2 − β3)) + (v2

L + v2
R)(2α2k

2
− + α3kk

′)]/(4k2
−)

+ kk′(2λ2 + λ3) + λ4k
2
+/2,

µ2
3 = (α1k

2
+ + 4α2kk

′ + α3k
′2 + 2ρ1v

2
R + 2ρ1(v2

L + v2
R))/2,

β2 = (−β1kk
′ − β3k

′2 + vLvR(2ρ1 − ρ3))/k2. (2.13)

Note the last equation: In the scenario β1 = β2 = β3 = 0, which we shall justify and adopt
later, it reads

0 = vLvR(ρ3 − 2ρ1).

This is known as the VEV see-saw relation. Clearly either vL, vR or (ρ3−2ρ1) must vanish.
We know that vR must be nonzero to break SU(2)R and give large mass to WR, ZR. The
factor (ρ3− 2ρ1) is known to be nonzero due to phenomenology: As we will find, several of
the new Higgs bosons have masses proportional (to first order) to (ρ3 − 2ρ1). If they are
massless, they would open up new Z decay channels with widths comparable to Z → νν̄
channels [18]. Even with small mass contributions from loop corrections, such extra decays
would be easily detectable, and we thus conclude that the only possibility in the βi = 0
case is vL = 0.

We will now derive the scalar mass spectrum. First, the mass matrices M2
R, M2

I , M2
+

and M2
++, in the bases

{φ0r
1 , φ

0r
2 , δ

0r
R , δ

0r
L },

{φ0i
1 , φ

0i
2 , δ

0i
R , δ

0i
L },

{φ+
1 , φ

+
2 , δ

+
R , δ

+
L}

and
{δ++

R , δ++
L },

respectively, are constructed from the bilinear terms resulting from expanding the potential
(2.12) around the VEVs (2.6). Then, these matrices are rotated into the flavour-diagonal
bases

{φ0r
− , φ

0r
+ , δ

0r
R , δ

0r
L },

{φ0i
− , φ

0i
+ , δ

0i
R , δ

0i
L },

{(kφ+
1 + k′φ+

2 )/k+, (kφ
+
2 − k′φ+

1 )/k+, δ
+
R , δ

+
L}

and
{δ++

L , δ++
R },

where

φ0
+ ≡

1

k+

(−k′φ0
1 + kφ0∗

2 ), φ0
− ≡

1

k+

(kφ0
1 + k′φ0∗

2 )
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and, in particular,

φ0r
+ =

1

k+

(−k′φ0r
1 + kφ0r

2 ), φ0r
− =

1

k+

(kφ0r
1 + k′φ0r

2 ).

Plugging in the relations (2.13) allow us to eliminate the LHS parameters. We also take
βi = 0, following several previous studies [18, 22], in order to avoid fine-tuning among
them. This is discussed further in Section 2.7.

Thus, the mass matrices, in the

{φ0r
− , φ

0r
+ , δ

0r
R , δ

0r
L },

{φ0i
− , φ

0i
+ , δ

0i
R , δ

0i
L },

{(kφ+
1 + k′φ+

2 )/k+, (kφ
+
2 − k′φ+

1 )/k+, δ
+
R , δ

+
L},

{δ++
L , δ++

R },

bases respectively, are

M2
r11 = 2λ1k

2
+ + 8k2

1k
2
2(2λ2 + λ3)/k2

+ + 8k1k2λ4,

M2
r12 = M2

r21 = 4k1k2k
2
−(2λ2 + λ3)/k2

+ + 2λ4k
2
−,

M2
r13 = M2

r31 = α1vRk+ + k2vR(4α2k1 + α3k2)/k+,

M2
r23 = M2

r32 = vR(2α2k
2
− + α3k1k2)/k+,

M2
r33 = 2ρ1v

2
R,

M2
r14 = M2

r41 = M2
r42 = M2

r24 = M2
r43 = M2

r34 = 0,

M2
r44 =

v2
R

2
(ρ3 − 2ρ1),

M2
i =


0 0 0 0

0 −2k2
+(2λ2 − λ3) +

α3v2
Rk

2
+

2k2
−

0 0

0 0 0 0

0 0 0
v2
R

2
(ρ3 − 2ρ1)

 ,

M2
+ =


α3k2

+v
2
R

2k2
−

0 α3vRk+√
8

0

0 0 0 0
α3vRk+√

8
0

α3k2
−

4
0

0 0 0
α3k2
−

2
+

v2
R

2
(ρ3 − 2ρ1)


and

M2
++ =

(
2ρ2v

2
R +

α3k2
−

2
0

0
α3k2
−

2
+

v2
R

2
(ρ3 − 2ρ1)

)
.
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Following [18], we present these matrices below in a shorthand notation: replacing any
parameter α1,2,3 by the generic α, λ1,2,3,4 by λ, and so on. Expanding in the hierarchy
vR � k, k′ and keeping only the most important terms we find

M2
r =


λκ2 λκ2 αvRκ 0
λκ2 αv2

R αvRκ 0
αvRκ αvRκ 2ρ1v

2
R 0

0 0 0
v2
R

2
(ρ3 − 2ρ1)

 ,

M2
i =


0 0 0 0
0 αv2

R 0 0
0 0 0 0

0 0 0
v2
R

2
(ρ3 − 2ρ1)

 ,

M2
+ =


αv2

R 0 αvRκ 0
0 0 0 0

αvRκ 0 ακ2 0

0 0 0
v2
R

2
(ρ3 − 2ρ1)


and

M2
++ =

(
2ρ2v

2
R 0

0
v2
R

2
(ρ3 − 2ρ1)

)
.

Diagonalizing these matrices allows us to find the physical Higgs masses. Identifying the
six Goldstone modes which are eaten by the gauge bosons ZL,R, W±

L,R is done in detail
in Sections 2.3.3 and 2.3.4. We will recount the results of that analysis here. The results
agree fully with Ref. [18].

The mass matrix M2
r , containing real parts of the fields, diagonalizes in the vR � κ

limit with four nonzero eigenvalues. The first, which we interpret as the SM Higgs boson,
is

M2
H0

0
=
k2

2

(
α2

ρ1

− 2λ

)
. (2.14)

This is the only Higgs boson which is not at the heavy SU(2)R-breaking scale vR. The
three remaining masses belong to three heavy, neutral, scalar Higgs bosons H0

1,2,3:

M2
H0

1
≈ αv2

R,

M2
H0

2
≈ ρ1vR,

M2
H0

3
=
v2
R

2
(ρ3 − 2ρ1).

Clearly, M2
i contains the two zero-mass Goldstone modes G0

1 = φ0i
− ≡ Imφ0

− and G0
2 = δ0i

R ;
the two neutral degrees of freedom which become the longitudinal polarization modes of,
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respectively, the Z1 and Z2 physical gauge bosons. There are also two neutral pseudoscalar
Higgs bosons, A0

1,2 with masses

M2
A0

1
≈ αv2

R,

M2
A0

2
=
v2
R

2
(ρ3 − 2ρ1).

The third matrix, M2
+, written in the basis{

1

k+

(kφ+
1 + k′φ+

2 ),
1

k+

(kφ+
2 − k′φ+

1 ), δ+
R , δ

+
L

}
,

in the form above already betrays one (complex) Goldstone degree of freedom G±L , propor-
tional to the mixture (kφ+

2 − k′φ+
1 )/k+, which is absorbed by WL. The second, G±R, is, in

the vR � k+ limit, almost exclusively proportional to δ+
R , which becomes the longitudinal

state of WR after symmetry breaking. Two degrees of freedom remain, realized in physical,
singly-charged Higgs states H±1,2 with masses

M2
H±1
≈ αv2

R

and

M2
H±2

=
v2
R

2
(ρ3 − 2ρ1).

Finally, the doubly charged matrix M2
++ is already in diagonal form. We find two

doubly-charged Higgs bosons δ±±1,2 with masses

M2
δ±±1
≈ ρ2v

2
R,

M2
δ±±2

=
v2
R

2
(ρ3 − 2ρ1).

The mass matrices above are all diagonal in the vR � k+ limit. Thus, in this limit, the
gauge eigenstates (in the basis given above) and physical eigenstates coincide. The form of
our results for the Higgs masses agrees with [21] but disagrees with [22] for the SM Higgs
mass. We discuss this discrepancy in 2.8.

Below we present the gauge eigenstate Higgs fields in terms of the physical Higgs fields
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and Goldstone modes for k+/vR → 0.

φ0
1 ≈

1√
2k+

[kH0
0 − k′H0

1 + i(kG0
1 − k′A0

1)]

φ0
2 ≈

1√
2k+

[kH0
0 + k′H0

1 − i(kG0
1 + k′A0

1)]

φ+
1 ≈

1√
2k+

[kH+
2 − k′G+

L ]

φ+
2 ≈

1√
2k+

[k′H+
2 + kG+

L ]

δ0
L ≈

1√
2

[H0
3 + iA0

2]

δ0
R ≈

1√
2

[H0
2 + iG0

2]

δ+
L ≈ H+

1

δ+
R ≈ G+

R (2.15)

Note that δ±±L,R are both gauge and mass eigenstates.
To summarize, there are 20 degrees of freedom stored in the ten complex numbers in

the Higgs fields; four in the bi-doublet, three times two in the triplets. We saw above
that SSB produces six massive bosons (W±

L,R, ZL,R); six Goldstone modes have been eaten,
leaving 14 degrees of freedom for the physical Higgs bosons: Four real scalars H0

0,1,2,3; two
real pseudoscalars A0

1,2; four complex scalars H±1,2 and δ±±1,2 . All of the physical Higgs states
but H0

0 lie hidden at the high scale vR.

2.4.1 SARAH implementation of the scalar potential

A short section on the implementation of the scalar potential in the SARAH model file
(found in full in Appendix A) is warranted here. While most parts of the implementation
of the MLRM into SARAH were straightforward, there are several things to keep in mind
here.

Consider the terms of Eqn. (2.12) containing the field Φ̃ = σ2Φ∗σ2. This is the charge
conjugate field to Φ. Our first approach was to introduce this in the model file as a sepa-
rate field in the scalar field definitions, with all gauge group charges conjugated, as a kind
of auxiliary field. This did produce the correct potential; however, we discovered8 that
SARAH was including kinetic terms for this field which contributed to the gauge boson
masses, et cetera. This is obviously wrong. SARAH does not support including “external”
objects like σ2 in the scalar potential, or, indeed, complex conjugation (without also trans-
position). Furthermore, it was not possible to expand the contractions component-wise by
hand (for example, writing Tr Φ̃Φ† = φ0∗

2 φ
0∗
1 + . . . ); SARAH does not seem to support this

8Partly due to correspondence with the F. Staub, the creator of SARAH.
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feature either. Every term in the model file Lagrangian must be written in terms of, for
our case, the full bi-doublet or triplet objects.

Our workaround was to calculate exactly what the correct contractions were, and then
constructing these terms in the model file potential using only the non-charge conjugated
fields. That is, we have written contractions like Φ̃Φ† using Φ†Φ†, contracting the indices
manually, so that it is, despite its appearance, a gauge-invariant. SARAH does support
such manual contraction, achieved by writing out the indices and tensors (Kronecker, Levi-
Civita etc.) explicitly.

Let us provide an example. The contraction discussed above, part of the µ2
2 term in

Eqn. (2.12), is
(Φ̃)lr(Φ

†)rl = 2(φ0∗
1 φ

0∗
2 − φ−1 φ+

2 )

which we see is equal to

(Φ†)rl (Φ
†)r
′

l′ ε
ll′εrr′ = 2(φ0∗

1 φ
0∗
2 − φ−1 φ+

2 ).

Consulting Appendix A, we see the term discussed written as

-mu22 epsTensor[lef2,lef1] epsTensor[rig2,rig1] conj[phi].conj[phi]

So, by replacing all terms in the potential containing Φ̃ by contractions containing only Φ
and Φ†, the correct potential could be input without having to resort to separately defined
fields.

Finally, it should be noted that SARAH does output warnings when checking the
Lagrangian, due to it understandably misinterpreting terms like ΦΦ and Φ†Φ† as non-
invariants. However, as we have illustrated, the explicit contractions ensure that they are
proper gauge invariants, so these errors may be safely ignored.

2.5 Yukawa sector

We write, with generality, the Yukawa Lagrangian for (gauge eigenstate) quarks Q as

LYukawa = QLi(hijΦ + h̃ijΦ̃)QRj + h.c. (2.16)

where, again, Φ̃ ≡ σ2Φ∗σ2 and h, h̃ are hermitian three-by-three matrices with generation
indices i, j. This hermicity is required by invariance under the parity transformation

QL ↔ QR, Φ↔ Φ†.

Evaluating at the VEVs (2.6), we obtain the mass matrices for up- and down-type quarks:

MU = kh+ k′e−iαh̃,

MD = k′eiαh+ kh̃.
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The hierarchy that exists between the top and bottom masses implies that h, h̃ and
k, k′ should not lie at the same scales [21]. Thus, we assume k � k′ and hij � h̃ij. This
allows us to approximate

MU ≈ kh,

MD = k′eiαh+ kh̃.

Since our gauge couplings are flavour-independent, and h is hermitian, we can work in
a basis such that MU is diagonal. We write

MU = SUM̂U

where M̂U = diag{mu,mc,mt} is the diagonal up-type mass matrix and SU = diag{su, sc, st},
where sq = ±1 depending on the sign of the corresponding eigenvalue of MU . Thus, we
have defined the masses as strictly positive and extracted the sign. MD is not necessarily
diagonal in this basis, since it also contains a term ∝ h̃, and h̃ is not, in general, diagonal-
ized in the same basis as h. With this in mind, we define the Cabibbo–Kobayashi–Maskawa
[23, 24] (CKM) matrices, which bring MD into diagonal form, via

MD = V CKM
R M̂DV

CKM†
L SU

where, in general, VR ≡ V CKM
R 6= V CKM

L ≡ VL, where we also introduced some shorthand
notation. Using the above we find

kh̃ = VLM̂LV
†
RSU −

k′

k
SUM̂Ue

iα.

Subtracting the hermitian conjugate from the above, and recalling the hermicity of h̃, we
find the equation

MDV̂
†
R − V̂RM̂D =

k

k′
2i sinαV †LM̂USUVL, (2.17)

where V̂R = V †LSUVR has been introduced, relating the left and right CKM matrices. Note
that, in the case of manifest left-right symmetry (α = 0) discussed above in the context of
the scalar potential, VR = SUVLSD; that is, the CKM matrices are equal up to the signs
of the eigenvalues.

Being a three-by-three unitary matrix, VR has nine independent parameters. Eqn.
(2.17) contains nine relations which can be used to find VR. We will outline how this may
be done, following [21]. Noting that mb � ms �MD and keeping only terms proportional
to the heaviest quark mass, the RHS of (2.17) can, from its antihermicity, be written−2iMD Im V̂R11 −msV̂R12 −mbV̂R13

msV̂
∗
R12 −2ims Im V̂R22 −mbV̂R23

mbV̂
∗
R13 mbV̂

∗
R23 −2imb Im V̂R33

 .
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Meanwhile, the RHS of (2.17) depends on the usual SM CKM matrix, the quark masses

M̂U and the CP-violating factor ξ sinα, where we introduced ξ ≡ k/k′. We recall the well-
known Wolfenstein parametrization [25] of the CKM matrix:

VL =

 1− 1
2
λ2 λ Aλ3(ρ− iη)

−λ 1− 1
2
λ2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4), (2.18)

written as an expansion in the parameter λ ≡ sin θCabibbo, with η as the CP-violating
parameter. Using this, and solving for the elements of V̂R to O(λ3), Ref. [21] finds (r ≡
ξmt/mb)

Im V̂R11 = −r sinα
mbmc

MDmt

λ2

(
sc + st

mt

mc

A2λ4((1− ρ)2 + η2)

)
,

Im V̂R22 = −r sinα
mbmc

msmt

(
sc + st

mt

mc

A2λ4

)
,

Im V̂R11 = −r sinαst,

V̂R12 = 2ir sinα
mbmc

msmt

λ

(
sc + st

mt

mc

A2λ4(1− ρ+ iη)

)
,

V̂R13 = −2ir sinαAλ3st(1− ρ+ iη),

V̂R23 = 2ir sinαAλ2st.

Again to order λ3, and defining three new phases θi ≡ SDii ImVRii for i = 1, 2, 3, the
remaining elements can be found from unitarity:

V̂Rii = SDiie
iθi (no sum over i),

V̂R21 = −sdssV̂ ∗R12e
i(θ1+θ2),

V̂R31 = −sdsbV̂ ∗R13e
i(θ1+θ3),

V̂R32 = −sbssV̂ ∗R32e
i(θ3+θ2).

Then the right-handed CKM matrix can be written

V̂R = PU ṼLPD

with PU = diag(su, sce
2iθ2 , ste

2iθ3), PD = diag(sde
iθ1 , sse

−iθ2 , sbe
−iθ3) and

ṼL =

 1− 1
2
λ2 λ Aλ3(ρ− iη)

−λ 1− 1
2
λ2 Aλ2e−2iθ2

Aλ3(1− ρ− iη) −Aλ2e2iθ2 1

 ,
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which is just the Wolfenstein CKM matrix with an additional phase on the (3,2) and (2,3)
elements. Performing this matrix product, the final result is

V̂R =

 sdsu
(
1− 1

2
λ2
)
eiθ1 sssuλe

−iθ2 sbsuAλ
3(ρ− iη)e−iθ3

−sdscλei(θ1+2θ2) sssc(1− 1
2
λ2)eiθ2 sbscAλ

2e−iθ3

sdstAλ
3(1− ρ− iη)ei(θ1+2θ3) −ssstAλ2ei(θ2+2θ3) sbste

iθ3


In orders of λ, V̂R has the same structure as the SM CKM matrix (cf. Eqn. (2.18)):

Mixing between generations one and two is ∼ λ, between generations one and three ∼ λ3

and between generations two and three ∼ λ2. However, every term now contains a CP-
violating phase which leads to enriched phenomenology in CP-related areas [21].

Let us here also add that entering the Yukawa-sector Lagrangian (2.16) into SARAH
posed the same difficulties as described in Section 2.4.1; they were, however, easily resolved
using the same methods as described there.

2.6 Tree level Lagrangian in physical basis

Here we collect the full MLRM tree-level Lagrangian, developed in the preceding sections,
in the mass basis.

2.6.1 Yukawa sector

Quarks. The quark mass terms are simply

L q
mass = Ū ′Li(MU)ijU

′
Rj + D̄′Li(MD)ijD

′
Rj + h.c.

where U ′ (D′) is the 3-dimensional vector of up (down)-type quarks in the weak basis.
The quark-scalar Lagrangian, with quark mass matrices (see Section 2.5) hQ = (kMU−

k′MD)/k2
− and h̃Q = (kMD−k′MU)/k2

− (denoted h, h̃ here for brevity) and Higgs bi-doublet
with its charge-conjugate

φ =

(
φ0

1 φ+
1

φ−2 φ0
2

)
, φ̃ =

(
φ0∗

2 −φ+
2

−φ−1 φ0∗
1

)
is

L Q
Yukawa = Q

′
Li(hijφ+ h̃ijφ̃)Q′Rj + h.c. ≡ L N + L C

where, in the last step, we have divided the Lagrangian into neutral and charged scalar
boson parts. These are, respectively,

L N = d̄′Li(hijφ
0
2 + h̃ijφ

0∗
1 )d′Rj + ū′Li(hijφ

0
1 + h̃ijφ

0∗
2 )u′Rj + h.c.

and
L C = d̄′Li(hijφ

−
2 − h̃ijφ−1 )u′Rj + ū′Li(hijφ

+
1 − h̃ijφ+

2 )d′Rj + h.c.

47



Plugging in the physical Higgs states (2.15), and rotating the weak quark fields q′ into the
mass eigenbasis states q using the CKM matrices described in Section 2.3.1, we have

L N = d̄Li

(
k(M̂U)ij − k′(M̂D)ij

k2
−

1√
2k+

[kH0
0 + k′H0

1 − i(kG0
1 + k′A0

1)]

+
k(M̂D)ij − k′(M̂U)ij

k2
−

1√
2k+

[kH0
0 − k′H0

1 − i(kG0
1 − k′A0

1)]

)
dRj

+ ūLi

(
k(M̂U)ij − k′(M̂D)ij

k2
−

1√
2k+

[kH0
0 − k′H0

1 + i(kG0
1 − k′A0

1)]

+
k(M̂D)ij − k′(M̂U)ij

k2
−

1√
2k+

[kH0
0 + k′H0

1 + i(kG0
1 + k′A0

1)]

)
uRj + h.c.

and

L C = d̄Li

(
k(M̂U)ij − k′(M̂D)ij

k2
−

1

k+

[k′H−2 + kG−L ]

− k(M̂D)ij − k′(M̂U)ij
k2
−

1

k+

[kH+
2 − k′G+

L ]

)
uRj

+ ūLi

(
k(M̂U)ij − k′(M̂D)ij

k2
−

1

k+

[kH+
2 − k′G+

L ]

− k(M̂D)ij − k′(M̂U)ij
k2
−

1

k+

[k′H+
2 + kG+

L ]

)
dRj + h.c.

Note that the mass matrices Mu,d have been diagonalized by

MD = V CKM
R M̂DV

CKM†
L SU

as discussed in Section 2.3.1.

Leptons. The lepton-Higgs interaction Lagrangian contains, in general, both Dirac and
Majorana pieces. Again denoting the (Dirac) lepton mass matrices hL = h, h̃L = h̃ and the
Majorana mass matrix hM , the most general such Lagrangian invariant under SU(2)L ⊗
SU(2)R and parity is [18]

L L
Yukawa = {LLi(hijφ+ h̃ijφ̃)LRj + h.c.}

+ {LcRi(hM)ijΣLLLj + L
c

Li(hM)ijΣRLRj + h.c.}
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where the first term yields, upon SSB, Dirac masses, and the second part Majorana masses.
The field ΣL,R = iσ2∆L,R. In the gauge basis, we have

L lepton−scalar = ν̄ ′Li(hijφ
0
1 + h̃ijφ

0∗
2 )ν ′Rj + ν̄ ′Li(hijφ

+
1 − h̃ijφ+

2 )l′Rj

+ l̄′Li(hijφ
−
2 − h̃ijφ−1 )ν ′Rj + l̄′Li(hijφ

0
2 − h̃ijφ0∗

1 )l′Rj

+ ν̄ ′cRi(hM)ijδ
0
Lν
′
Lj −

δ+
L√
2

(ν̄ ′cRi(hM)ijl
′
Lj + l̄′cRi(hM)ijν

′
Lj)

+ ν̄ ′cLi(hM)ijδ
0
Rν
′
Rj −

δ+
R√
2

(ν̄ ′cLi(hM)ijl
′
Rj + l̄′cLi(hM)ijν

′
Rj)

− l̄′cRi(hM)ijδ
++
L l′Lj − l̄′cLi(hM)ijδ

++
R l′Rj + h.c.

where the primes indicate mass eigenstate fields and Lc is the charge conjugate of L.
Inserting the physical fields in (2.15) we obtain the lepton mass Lagrangian

L l
mass = l̄′Li(Ml)ijl

′
R + l̄′Ri(M

†
l )ijl

′
L,

where the lepton mass matrix is Ml = M †
l = 1√

2
(kh̃l+k

′hl). The neutrino mass Lagrangian
is

L ν
mass =

1

2
(n̄′cLMνn

′
R + n̄′cRM

∗
νn
′
L), (2.19)

with fields n′R =

(
ν ′cR
ν ′R

)
and n′L =

(
ν ′L
ν ′cL

)
. The neutrino mass matrix is

Mν =

(
0 MD

MT
D MR

)
,

where MD = 1√
2
(khl + k′h̃l), MR =

√
2hMvR, and the (1,1) element follows from vL = 0.
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Meanwhile,

L lepton−scalar = ν̄ ′Li

(
hij

1√
2k+

[kH0
0 − k′H0

1 + i(kG0
1 − k′A0

1)]

+ h̃ij
1√
2k+

[kH0
0 + k′H0

1 + i(kG0
1 + k′A0

1)]

)
ν ′Rj

+ ν̄ ′Li

(
hij

1

k+

[kH+
2 − k′G+

L ]− h̃ij
1

k+

[k′H+
2 + kG+

L ]

)
l′Rj

+ l̄′Li

(
hij

1

k+

[k′H−2 + kG−L ]− h̃ij
1

k+

[kH−2 − k′G−L ]

)
ν ′Rj

+ l̄′Li

(
hij

1√
2k+

[kH0
0 + k′H0

1 − i(kG0
1 + k′A0

1)]

− h̃ij
1√
2k+

[kH0
0 − k′H0

1 − i(kG0
1 − k′A0

1)]

)
l′Rj

+ ν̄ ′cLi(hM)ij
1√
2

[H0
2 + iG0

2]ν ′Rj

− H+
1√
2

(ν̄ ′cRi(hM)ijl
′
Lj + l̄′cRi(hM)ijν

′
Lj)

+ ν̄ ′cLi(hM)ij
1√
2

[H0
2 + iG0

2]ν ′Rj

− G+
R√
2

(ν̄ ′cLi(hM)ijl
′
Rj + l̄′cLi(hM)ijν

′
Rj)

− l̄′cRi(hM)ijδ
++
L l′Lj − l̄′cLi(hM)ijδ

++
R l′Rj + h.c.,

once again recalling that δ++
L,R are already physical.

2.6.2 Gauge boson-fermion interactions

The gauge boson-fermion interactions are obtained from the Lagrangian

L gauge−fermion = Q̄Lii /DQLi + L̄Lii /DLLi + (L→ R)

with the covariant derivative (2.2).

Quarks. Considering first quark fields, we have charged and neutral currents of the forms

L charged current
gauge−quark = Ū ′Lγ

µ g√
2
W+
LµD

′
L + D̄′Lγ

µ g√
2
W−
LµU

′
L + (L→ R)

and

L neutral current
gauge−quark = Ū ′Lγ

µ

[
g

2
W 3
Lµ +

g′

6
Bµ

]
U ′L + D̄′Lγ

µ

[
−g

2
W 3
Lµ +

g′

6
Bµ

]
D′L

+ (L→ R)
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in the gauge eigenbasis (where, once again, U ′, D′ are 3-dimensional vectors of up- and
down-type quarks, respectively). Rotating into physical fields, we obtain

L cc
g−q = ŪLγ

µV CKM
L

g√
2
W+
LµDL + D̄Lγ

µV CKM†
L

g√
2
W−
LµUL + (L→ R)

and

L nc
g−q = ŪLγ

µ

[
g

2
(sWAµ − cWZµ) +

g′

6
(cW cYAµ + sW cYZ1 + sYZ2µ)

]
UL

+ D̄Lγ
µ

[
g

2
(cWZµ − sWAµ) +

g′

6
(cW cYAµ + sW cYZ1 + sYZ2µ)

]
DL

+ ŪLγ
µ

[
g

2
(cW sYAµ + sW sYZµ − cYZ2µ)

+
g′

6
(cW cYAµ + sW cYZ1 + sYZ2µ)

]
UL

+ D̄Lγ
µ

[
g

2
(cW sYAµ + sW sYZµ − cYZ2µ)

+
g′

6
(cW cYAµ + sW cYZ1 + sYZ2µ)

]
DL.

Leptons. The charged and neutral current gauge boson-lepton Lagrangians are, in terms
of weak eigenstate fields,

L charged current
gauge−lepton = ν̄ ′Lγ

µ g√
2
W+
Lµl
′
L + l̄′Lγ

µ g√
2
W−
Lµν

′
L + (L→ R)

and

L neutral current
gauge−lepton = ν̄ ′Lγ

µ

[
g

2
W 3
Lµ −

g′

2
Bµ

]
ν ′L − l̄′Lγµ

[
g

2
W 3
Lµ +

g′

2
Bµ

]
l′L + (L→ R)

Inserting the physical fields, and introducing the Pontecorvo–Maki–Nakagawa–Sakata [26,
27] (PMNS) matrices, which simply mix leptons to physical states in exact analogy to how
the CKM matrices mix quarks, we have

L cc
gauge−lepton = ν̄LV

PMNS
L γµ

g√
2
W+
LµlL + l̄LV

PMNS†
L γµ

g√
2
W−
LµνL + (L→ R)
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and

L nc
gauge−lepton = ν̄Lγ

µ

[
g

2
(sWAµ − cWZ1µ)

− g′

2
(cW cYAµ + sW cYZ1 + sYZ2µ)

]
νL

− l̄Lγµ
[
g

2
(sWAµ − cWZ1µ)

+
g′

2
(cW cYAµ + sW cYZ1 + sYZ2µ)

]
lL

+ ν̄Rγ
µ

[
g

2
(cW sYAµ + sW sYZ1µ − cYZ2µ)

− g′

2
(cW cYAµ + sW cYZ1 + sYZ2µ)

]
νR

− l̄Rγµ
[
g

2
(cW sYAµ + sW sYZ1µ − cYZ2µ)

+
g′

2
(cW cYAµ + sW cYZ1 + sYZ2µ)

]
lR

Simplifying using the expressions (2.8) for the coefficients, we find that νL,R do not interact
with the photon field, as we require.

2.6.3 Gauge boson-scalar interactions

Starting from the kinetic Higgs Lagrangian

L kinetic
H = Tr[(Dµ∆L)†(Dµ∆L)] + Tr[(Dµ∆R)†(Dµ∆R)]

+ Tr[(DµΦ)†(DµΦ)]

and expanding around the vacuum, we obtain the following pieces:

L kinetic
Higgs + L kinetic

Goldstone + L mass
gauge + L bilinear + L gauge−scalar

The first two terms are kinetic terms for the physical Higgs and Goldstone states:

L kinetic
Higgs =

1

2
(∂µH

0
i )(∂µH0

i ) +
1

2
(∂µA

0
j)(∂

µA0
j)

+ (∂µH
+
j )(∂µH−j ) + (∂µδ

++
L )(∂µδ−−L ) + (∂µδ

++
R )(∂µδ−−R ),

where i runs from 0 to 3 and j from over 1,2, and

L kinetic
Goldstone =

1

2
(∂µG

0
j)(∂

µG0
j) + (∂µG

+
L)(∂µG−L) + (∂µG

+
R)(∂µG−R).
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The gauge boson mass Lagrangian, treated in detail in Section 2.3.1, is

L mass
gauge =

1

2

(
Aµ Z1µ Z2µ

)
M2

Z

AµZµ
1

Zµ
2

+ (W−
Lµ W−

Rµ)M2
W

(
W+µ
L

W+µ
R

)
,

where the mass matrices are diagonal with the eigenvalues found in the aforementioned
Section. We recall that W±

L,R are mass eigenstates to O(kk′/v2
R).

L bilinear contains bilinear terms which are made to cancel when gauge-fixing terms
added; this is beyond the scope of this study, but is done in [22].

The remaining part of the Lagrangian, L gauge−scalar, contains interactions between the
gauge and scalar bosons. We first present the terms containing three fields. We do not, in
the interest of compactness, print the insertion of the physical states (2.15).

Couplings between two gauge bosons and one scalar.

L gauge−scalar ⊃
g2

2

[
(k′φ−1 − kφ−2 )W 3µ

R W+
Lµ + (k′φ−2 − kφ−1 )W 3µ

L W+
Rµ

]
+
√

2gvRW
+
Rµδ

−
R

(
g′Bµ − g

2
W 0µ
R

)
− g2vR√

2
W+
RµW

+µ
R δ−−R

+
g2

4
√

2
(kφ0

1 + k′φ0
2)(W 3

Lµ −W 3
Rµ)(W 0µ

L −W
0µ
R )

− g2

√
2
δ0
R(gW 3

Rµ − g′Bµ)(gW 0µ
R − g

′Bµ)

+
g2

√
8

(kφ0
1 + k′φ0

2)(W+
LµW

−µ
L +W+

RµW
−µ
R )

− g2

√
2

(k′φ0
1 + kφ0∗

2 )W−
LµW

+µ
R +

g2vR√
2
δ0
RW

+
RµW

−µ
R

+ h.c.
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Couplings between one gauge boson and two scalars.

L gauge−scalar ⊃
ig

2

[
(∂µφ+

1 )φ−1 − (∂µφ−2 )φ+
2

]
(W 3

Lµ +W 3
Rµ)

− ig′
[
(∂µδ−R)δ+

R + (∂µδ−L )δ+
L

]
Bµ

− i(∂µδ−−R )δ++
R (gW 0

Rµ + g′Bµ)

− i(∂µδ−−L )δ++
L (gW 0

Lµ + g′Bµ)

− ig
[
(∂µδ+

R)δ−−R − (∂µδ−−R )δ+
R

]
W+
Rµ

− ig
[
(∂µδ+

L )δ−−L − (∂µδ−−L )δ+
L

]
W+
Lµ

+
ig√

2

{
(∂µφ−2 )φ0∗

1 − (∂µφ−1 )φ0
2 + (∂µφ0

2)φ−1

− (∂µφ0∗
1 )φ−2 −

√
2
[
(∂µδ−L )δ0

L − (∂µδ0
L)δ−L

] }
W+
Lµ

+
ig√

2

{
(∂µφ−2 )φ0∗

1 − (∂µφ−1 )φ0
2 + (∂µφ0

2)φ−1

− (∂µφ0∗
1 )φ−2 −

√
2
[
(∂µδ−L )δ0

L − (∂µδ0
L)δ−L

] }
W+
Lµ

+
ig

2

[
(∂µφ0

1)φ0∗
1 − (∂µφ0

2)φ0∗
2

]
(W 0

Lµ −W 0
Rµ)

+ i(∂δ0∗
R )δ0

R(gW 0
Rµ − g′Bµ) + i(∂δ0∗

L )δ0
L(gW 0

Lµ − g′Bµ)

+ h.c.
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Couplings between two gauge bosons and two scalars.

L gauge−scalar ⊃
g2

4
(φ+

1 φ
−
1 + φ+

2 φ
−
2 )(W 0

Lµ +W 0
Rµ)(W 0µ

L +W 0µ
R )

+
g2

2
(φ+

1 φ
−
1 + φ+

2 φ
−
2 )(W−

LµW
+µ
L +W−

RµW
+µ
R )

+ g′2(δ+
L δ
−
L + δ+

Rδ
−
R)BµB

µ

+ 2g2δ+
Rδ
−
RW

+
RµW

−µ
R + 2g2δ+

L δ
−
LW

+
LµW

−µ
L

+ δ++
R δ−−R

[
(gW 0

Rµ + g′Bµ)(gW 0µ
R + g′Bµ) + g2W−

RµW
+µ
R

]
+ δ++

L δ−−L
[
(gW 0

Lµ + g′Bµ)(gW 0µ
L + g′Bµ) + g2W−

LµW
+µ
L

]
+
g2

4
(φ0

1φ
0∗
1 + φ0

2φ
0∗
2 )(W 0

Lµ −W 0
Rµ)(W 0µ

L −W
0µ
R )

+ δ0
Rδ

0∗
R (gW 0

Rµ − g′Bµ)(gW 0µ
R − g

′Bµ)

+ δ0
Lδ

0∗
L (gW 0

Lµ − g′Bµ)(gW 0µ
L − g

′Bµ)

+ g2δ0
Lδ

0∗
L W

+
LµW

−µ
L + g2δ0

Rδ
0∗
RW

+
RµW

−µ
R

− g2φ0
1φ

0∗
2 W

−
LµW

+µ
R − g2φ0∗

1 φ
0
2W

+
LµW

−µ
R

−
{
g2φ+

2 φ
+
1 W

−
LµW

−µ
L

+ gδ+
Rδ
−−
R (gW 0

Rµ + 2g′Bµ)W+µ
R

+ gδ+
L δ
−−
L (gW 0

Lµ + 2g′Bµ)W+µ
L

+
g2

2
(φ−1 φ

0
2 − φ−2 φ0∗

1 )W 0
RµW

+µ
L

+
g2

2
(φ−2 φ

0∗
2 − φ−1 φ0

1)W 0
LµW

+µ
R

+ gδ−Rδ
0
R(−gW 0

Rµ + 2g′Bµ)W+µ
R

+ gδ−L δ
0
L(−gW 0

Lµ + 2g′Bµ)W+µ
L

− g2δ−−R δ0
RW

+
RµW

+µ
R − g2δ−−L δ0

LW
+
LµW

+µ
L + h.c.

}

2.6.4 Gauge boson interactions

The gauge-gauge Lagrangian is, in the gauge eigenbasis,

L gauge−gauge = −1

4
W iµν
L W i

Lµν −
1

4
W iµν
R W i

Rµν −
1

4
BµνBµν ,
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where we have introduced the field strength tensors

W 1µν
L,R = ∂µW 1ν

L,R − ∂νW
1µ
L,R + g(W 2µ

L,RW
3ν
L,R −W

3µ
L,RW

2ν
L,R),

W 2µν
L,R = ∂µW 2ν

L,R − ∂νW
2µ
L,R + g(W 3µ

L,RW
1ν
L,R −W

1µ
L,RW

3ν
L,R),

W 3µν
L,R = ∂µW 3ν

L,R − ∂νW
3µ
L,R + g(W 1µ

L,RW
2ν
L,R −W

2µ
L,RW

1ν
L,R),

Bµν = ∂µBν − ∂νBµ.

Inserting the physical fields A,W±
L,R, ZL,R (see Section 2.3.1; we use vR � k, k′ through-

out, which means that W±
L,R are already physical fields and the neutral fields are given by

Eqn. (2.9)) we have

√
2W 1µν

L = ∂µ(W+ν
L +W−ν

L )− ∂ν(W+µ
L +W−µ

L )

+ ig

[
(W+µ

L −W−µ
L )(sWA

ν − cWZν
1 )

− (sWA
µ − cWZµ

1 )(W+ν
L −W

−ν
L )

]
,

√
2W 1µν

R = ∂µ(W+ν
R +W−ν

R )− ∂ν(W+µ
R +W−µ

R )

+ ig

[
(W+µ

R −W−µ
R )(cW sYA

ν − sW sYZν
1 − cYZν

2 )

− (cW sYA
µ − sW sYZµ

1 − cYZ
µ
2 )(W+ν

R −W
−ν
R )

]
,

√
2W 2µν

L = i∂µ(W+ν
L −W

+ν
L )− i∂ν(W+µ

L −W+µ
L )

+ g

[
(sWA

ν − cWZν
1 )(W+µ

L +W−µ
L )

− (W+ν
L +W−ν

L )(sWA
µ − cWZµ

1 )

]
,

√
2W 2µν

R = i∂µ(W+ν
R −W

+ν
R )− i∂ν(W+µ

R −W+µ
R )

+ g

[
(cW sYA

ν − sW sYZν
1 − cYZν

2 )(W+µ
R +W−µ

R )

− (W+ν
R +W−ν

R )(cW sYA
µ − sW sYZµ

1 − cYZ
µ
2 )

]
,

W 3νµ
L = ∂µ(sWA

ν − cWZν
1 )− ∂ν(sWAµ − cWZµ

1 )

+
i

2
g

[
(W+µ

L +W−µ
L )(W+ν

L −W
−ν
L )− (W+µ

L −W−µ
L )(W+ν

L +W−ν
L )

]
,
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W 3νµ
R = ∂µ(cW sYA

ν − sW sYZν
1 − cYZν

2 )

− ∂ν(cW sYAµ − sW sYZµ
1 − cYZ

µ
2 )

+
i

2
g

[
(W+µ

R +W−µ
R )(W+ν

R −W
−ν
R )− (W+µ

R −W−µ
R )(W+ν

R +W−ν
R )

]
,

Bµν = ∂µ(cW cYA
ν + sW cYZ

ν
1 + sYZ

ν
2 )

− ∂ν(cW cYAµ + sW cYZ
µ
1 + sYZ

µ
2 ).

We will not explicitly insert the above into the Lagrangian; the operation is straight-
forward. For the full expanded expressions we refer to, among others, [22].

2.7 Phenomenological overview

While we do not focus on experimental aspects in this paper, we will give here a brief
review of the current phenomenological state of the MLRM.

Since the model introduces right-handed neutrinos, the possibility of making the left-
handed neutrinos naturally very light arises via Majorana masses and the see-saw mecha-
nism. Let us review this process.

Having arrived at the neutrino mass Lagrangian (2.19) in Section 2.6,

L ν
mass =

1

2
n̄′cLMνn

′
R + h.c.,

with fields n′R =

(
ν ′cR
ν ′R

)
and n′L =

(
ν ′L
ν ′cL

)
. We found the neutrino mass matrix to have the

form

Mν =

(
0 MD

MT
D MR

)
, (2.20)

where MD are Dirac mass matrices, dependent on the SM-scale VEVs. MR, meanwhile,
depends on the large VEV vR.

The see-saw mechanism [5] is essentially realized when diagonalizing a matrix of the
type (2.20) above, where the (2, 2) element is much larger than the off-diagonal elements.
Let us, for simplicity, consider a case where the dimensionality is reduced, so that MR and
MD are numbers and not matrices. We find the eigenvalues

λ1,2 =
1

2

(
MR ±

√
M2

R + 4M2
D

)
.

Using MR �MD, the eigenvalues are, to leading order,

λ1 ∼MR,

λ2 ∼
M2

D

MR

.
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Thus, we find one neutrino mass proportional to the large scale introduced in vR, and the
other suppressed by it. This see-sawing, where the light mass is pushed down as the scale
vR is raised, supplies a natural explanation for the light left-handed neutrinos, from only
the hierarchy vR � k, k′, where the SM cannot.

Measured upper limits of the SM neutrinos can in this way place lower limits on the
scale vR; [20] writes at least 1010 GeV.

In Section 2.4, we mention that the βi parameters in the scalar potential may be set
to zero. This choice appears in the literature [18, 22], motivated by the elimination of the
need to fine-tune the βi’s: Consider the last equation in (2.13), the so-called VEV see-saw
relation. The authors of [18] argue that if reasonable constraints (from neutrino and gauge
boson masses) are placed on vR and vL, the βi’s must be fine-tuned to six or seven orders
of magnitude. After failing to find a symmetry constraining βi = 0 within the model, they
conclude that this can reasonably be achieved by assuming the MLRM is embedded in
some GUT, a hidden symmetry of which forces the βi’s to vanish exactly.

Since the model predicts several new particles, searches for such supply limits on the
free parameters of the model. Two important classes of such are searches for new gauge
bosons and for charged Higgses.

Currently, the best mass limits on new neutral or charged gauge bosons (so-called Z ′

and W ′) come from the LHC. For left-right-symmetric models CMS has excluded a heavy,
charged WR boson, assuming a heavy right-handed muon neutrino Nµ also exists [28]. The
excluded area in the plane spanned by (MNµ ,MWR

) reaches a lower bound on the WR mass
of 2.5 TeV.

For singly-charged Higgs bosons, ATLAS reports [29] a model-dependent lower limit on
the mass of approximately 100 GeV. This limit depends heavily on the t→ bH+ branching
ratio, and assumes Br[H+ → ντ ] = 100%: Please consult [29] for the full exclusion zones
in parameter space.

Possible charged Higgs signals at the LHC are reviewed in [30]. They find a current
limit on MLRM doubly-charged Higgs boson mass of MH±± & 400− 500 GeV, and that
this limit should be improved by around 100 GeV during the coming

√
s = 14 TeV LHC

run.
Thus, the MLRM is very much alive; while no signal has been detected, due to the

large scale of vR required anyway for light neutrino mass generation, the model is not
immediately threatened by this fact.

2.8 Conclusions and outlook

We have introduced the particle content, symmetries and vacuum structure of the MLRM,
and verified that it does not suffer from any chiral gauge anomalies. We have broken
the MLRM group down to U(1)Q ⊗ SU(3)C and found the Goldstone modes associated
with each broken generator, using a general method. We have not seen this calculation
done explicitly in the previous literature. We have also rederived the Lagrangian in the
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gauge and physical bases, using purpose-written Mathematica code as well as SARAH.
The methods agree fully.

The above results have been cross-referenced with the literature and agree, with the
exception of the SM Higgs mass (2.14), which disagrees with Ref. [22]. It does, however,
agree with Ref. [18]; a seminal paper to the field, with calculations presented, which Ref.
[22] also cites. In the light of this, we are confident in our results, and assume there is a
mistake or typographical error in Ref. [22].

Since SARAH is a powerful tool for non-SUSY models (it is generally harder to calculate
RGEs for non-SUSY than SUSY models), having a complete MLRM SARAH framework es-
tablished opens several interesting research avenues. We have short-term plans for, among
other things, calculating the RGEs in SARAH and studying the vacuum stability at the
1-loop level.

We have seen that left-right-symmetric models, like the one studied here, have a number
of very attractive features. Most notably, the seemingly arbitrary way in which the SM
treats chirality by favouring left-handedness is completely cured. While the hierarchy
vR � vL breaks parity at low scale, like the SM, it is restored at high scale. Furthermore,
right-handed neutrinos with large Majorana masses explain the observed small but finite
masses of the left-handed SM neutrinos, through the see-saw mechanism, in an appealing
way.

While no direct signals of predictions made by this model have been measured, no
phenomenological evidence against it has been found.

However, the MLRM is significantly more complex than the SM in certain sectors; the
scalar potential, for example, has 18 free parameters just by itself (as compared to two in
the SM). In order to remedy this, we must look to theories with unification and higher
symmetries.
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3 Non-SUSY Trinification

Trinification, first suggested in 1984 by de Rújula, Georgi and Glashow [9], is traditionally
a GUT with gauge group

SU(3)L ⊗ SU(3)R ⊗ SU(3)C

where the gauge interactions are unified (or indeed trinified) by a discrete Z3 symmetry.
Such models have been studied in a variety of contexts over the last 30 years [31–37], and
have been found to have several attractive features: All fermions and scalars are symmet-
rically and elegantly represented as bi-fundamentals of the above groups, and Trinfication-
class models, since they do not require adjoint-representation Higgs fields to break their
gauge group down to the SM, may be embedded in heterotic string theories [34]. Further-
more, trinified theories have been shown to have suppressed proton decay rates [31, 34], a
problem which otherwise plagues GUTs.

However, there are issues with this type of model. Trinified models have, in general,
large flexibility in the fermion couplings it can accommodate [34]. While this tends to
gives a model phenomenological survivability, its predictive power is diminished by the
large amount of free parameters (here, Yukawa couplings) it must introduce.

We propose a novel trinified model, symmetric under

[SU(3)L ⊗ SU(3)R ⊗ SU(3)C ]⊗ SU(3)f ⊗ Z3.

SU(3)f is a global family symmetry. We will see that this addition vastly reduces the
amount of free parameters (ending up with fewer than ten; only one Yukawa and one
gauge coupling) and further unifies the theory. Additionally, we show the existence of a
potential minimum where the potential takes a remarkably simple form, parametrized by
only one quadratic and one quartic coupling.

The particle content and group representations are introduced in Section 3.1. We then
study the SSB of global and gauge symmetries in Section 3.2. In Section 3.3 we write the
tree-level Lagrangian of the theory, before deriving the charges and masses of the scalars,
fermions and gauge bosons of the theory, as well as identifying the Goldstone bosons as-
sociated with the SSB of the gauge symmetries, in Section 3.4. Finally, we give some
concluding remarks and an outlook regarding future research in Section 3.5.

This section was developed in collaboration with R. Pasechnik9, J.E.C. Molina9, A.P.
Morais9,10, J. Wessén9 and M.O.P. Sampaio10.

9 Theoretical High Energy Physics (THEP) at Lund University, Lund, Sweden
10 Center for Research and Development in Mathematics and Applications (CIDMA) at Aveiro Univer-

sity, Aveiro, Portugal
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3.1 Particle content

The fermions are grouped into the 27-plets (three-index objects)

L, QL, QR,

transforming under the gauge and global symmetry group [SU(3)1 ⊗ SU(3)2 ⊗ SU(3)3]⊗
SU(3)f as

(3,3∗,1,3), (3∗,1,3,3), (1,3,3∗,3),

respectively. The scalars, meanwhile, are placed in the object H whose representation of
the above group is

(3,3∗,1,3).

The three SU(3)1,2,3 symmetries are local, and the remaining is a global family symmetry.
We will be using i, j, k, . . . to denote SU(3)1 indices; a, b, c, . . . for SU(3)2; s, t, u, . . .
for SU(3)3 and α, β, γ, . . . as the family index. Upper indices indicate the fundamental
representation and lower the anti-fundamental: Thus, for example, the object Liαa belongs
to the fundamental representations of SU(3)1 and family space, and the anti-fundamental
representation of SU(3)2.

In everything that follows, we will identify the groups SU(3)1,2,3 as SU(3)L,R,C for
left, right and colour, but this is in principle only decided by the vacuum structure pre-
sented in the next section. The particular choice of vacuum we make below results in the
aforementioned group identification.

Then, as the notation anticipates, we interpret L as a lepton multiplet and QL,R as left-
and right-handed quarks, respectively, while the H components are Higgs fields.

3.2 Symmetry breaking

In order to break the gauge symmetry SU(3)L⊗SU(3)R⊗SU(3)C down to SU(3)C⊗U(1)Q,
we assign the Higgs fields VEVs as follows.

〈H i1
a 〉 =

0 0 0
0 0 0
0 0 p√

2

 ; 〈H i2
a 〉 =

 0 0 0
0 0 0
q√
2

0 0

 ; 〈H i3
a 〉 =

1√
2

u 0 0
0 v 0
0 0 0

 .

This is, as we will see, sufficient for breaking Trinification fully. We could, however, imagine
a more complicated vacuum structure with more Higgs components getting VEVs. For
simplicity, we will consider only this, simplest, case. The VEVs p and q break SU(3)L ⊗
SU(3)R → SU(2)L ⊗ SU(2)R ⊗ U(1) and SU(2)R ⊗ U(1) → U(1), where the aim is to
move from the full symmetry to a left-right-symmetric model like the one studied in the
previous chapter. The VEVs in the third generation ensure SM breaking.

The Higgs multiplet VEV transforms under SU(3)L,R as

〈H iα
a 〉 → 〈H iα

a 〉+ δ〈H iα
a 〉
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where
δ〈H iα

a 〉 = (iωζL(T ζL)ijδ
b
a − iω

ζ
R(T ζR)baδ

i
j)〈H

jα
b 〉. (3.1)

The ωL,R’s are 8+8 real infinitesimals which parametrize the gauge transformation. We
wish to find the transformation which leaves the vacuum invariant, or for which δ〈H〉 = 0.
Since we break the SM fully, this last unbroken symmetry should be U(1)Q. Solving the
system of equations obtained when (3.1) = 0, we find

ω3
L = ω3

R = −
√

3ω8
L = −

√
3ω8

R

and the rest 0. We define

ω8
L = ω8

R ≡ ω =⇒ ω3
L = ω3

R = −
√

3ω,

which means that the EM charge is

Q = T 8
L + T 8

R −
√

3(T 3
L + T 3

R). (3.2)

We now turn to the breaking of the global SU(3)f family symmetry. Since a global
transformation is just a special case of a gauge transformation, the most general (infinites-
imal) global transformation of the vacuum we can write produces the change

δ〈H iα
a 〉 = (iωζf (T

ζ
f )αβδ

i
jδ
b
a + iωζL(T ζL)ijδ

b
aδ
α
β − iω

ζ
R(T ζR)baδ

i
jδ
α
β )〈Hjβ

b 〉,

since H transforms in the fundamental representation under SU(3)f and SU(3)L, and
in the anti-fundamental under SU(3)R. Solving the system of equations resulting from
the demand of no change of the vacuum under the above transformation, we obtain the
following solutions.

ω1,2,4,5,6,7
L,R = 0,

ω3
L = ω3

R = −
√

3ω8
L = −

√
3ω8

R,

ω1,2,3,4,5,6,7,8
f = 0.

It should not come as a surprise that we have found the U(1)Q transformation again here,
since, as we mentioned, any global transformation is also a gauge transformation. From
the last line, we learn that SU(3)f is, in fact, fully broken by our vacuum; there are no
parameters available with which to parametrize a transformation.

3.3 Tree-level Lagrangian

3.3.1 Kinetic terms

The fermion kinetic Lagrangian is

L ⊃ L†aiαi /DL
iα
a +Q†iLsαi /DQ

sα
Li +Q†sRaαi /DQ

aα
Rs.
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Note that the first field in each term is conjugated with respect to all indices. The covariant
derivatives are

(DµL)ia =
[
δijδ

b
a∂µ − i

g

2
(AζµTζ)

i
jδ
b
a + i

g

2
(Bζ

µTζ)
b
aδ
i
j

]
Ljb

(DµQL)si =
[
δji δ

s
t∂µ + i

g

2
(AζµTζ)

j
iδ
s
t − i

g

2
(Cζ

µTζ)
s
tδ
j
i

]
Qt
Lj

(DµQR)as =
[
δab δ

t
s∂µ − i

g

2
(Bζ

µTζ)
a
bδ
t
s + i

g

2
(Cζ

µTζ)
t
sδ
a
b

]
Qb
Rt,

where family index has been left implicit. The groups SU(3)L,R,C have corresponding
gauge fields Aζµ, B

ζ
µ, C

ζ
µ, ζ ∈ {1, . . . , 8.}. Each field, lying in the adjoint representation, has

8 components, matching the eight SU(3) generators T ζ . The couplings to the gauge fields
are g1 = g2 = g3 = g, respecting the Z3 symmetry.

Meanwhile, the kinetic terms for the scalars are

L ⊃ 1

2
[(DµH)†]aiα[(DµH)]iαa

where
(DµH)ia =

[
δijδ

b
a∂µ − i

g

2
(AζµTζ)

i
jδ
b
a + i

g

2
(Bζ

µTζ)
b
aδ
i
j

]
Hj
b ,

identical in structure to the term for L, since H transforms the same way as L.

3.3.2 Yang-Mills sector

The Yang-Mills contribution to the Lagrangian is written, as usual,

L ⊃ −1

4
Aµνζ A

ζ
µν −

1

4
Bµν
ζ B

ζ
Rµν −

1

4
Cµν
ζ Cζ

µν .

The field strength tensors are constructed in the normal way:

Aµνζ ≡ ∂µAνζ − ∂νA
µ
ζ + gf ζηθAµηA

ν
θ

where g and f are the corresponding couplings and structure functions respectively.

3.3.3 Yukawa sector

In our highly unified theory, the only Yukawa term is

L ⊃ yεαβγH
iα
a Q

sβ
LiQ

aγ
Rs

where y is the coupling. Note that there is only one coupling since the interaction must be
a scalar under all gauge groups and SU(3)f , and this is the only term possible to construct.
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3.3.4 Scalar potential

The quartic terms in the scalar potential are näıvely given by all possible ways of fully
contracting the product of two pairs of the object (HH†). Defining the tensor

Hibα
jaβ ≡ H iα

a H
†b
jβ,

these are

V ⊃ λ1(Hiaα
iaα)2 + λ2(Hiaβ

iaα)(Hjbα
jbβ) + λ3(Hiaα

ibα )(Hjbβ
jaβ) + λ4(Hiaα

jaα)(Hjbβ
ibβ )

+ λ5(Hiaα
jbα)(Hjbβ

iaβ) + λ6(Hiaβ
ibα)(Hjbα

jaβ) + λ7(Hiaβ
jaα)(Hibα

ibβ) + λ8(Hiaβ
jbα)(Hjbα

iaβ ).

Expanding these terms (and adding the quadratic µ2 term), we have

V ⊃− µ2H iα
a H

†a
iα + λ1(H iα

a H
†a
iα)2 + λ2(H iβ

a H
†a
iα)(Hjα

b H
†b
jβ)

+ λ3(H iα
b H

†a
iα)(Hjβ

a H
†b
jβ) + λ4(H iα

a H
†a
jα)(Hjβ

b H
†b
iβ)

+ λ5(H iα
b H

†a
jα)(Hjβ

a H
†b
iβ) + λ6(H iβ

b H
†a
iα)(Hjα

a H
†b
jβ)

+ λ7(H iβ
a H

†a
jα)(Hjα

b H
†b
iβ) + λ8(H iβ

b H
†a
jα)(Hjα

a H
†b
iβ).

However, when they are expanded, the λ1,2,3,4 terms are simply reproduced by the λ8,5,7,6

terms, respectively, so we are left with only four independent quartic terms. The scalar
potential is then

V =− µ2H i
aαH

†aα
i + λ1(H i

aαH
†aα
i )2 + λ2(H i

aβH
†aα
i )(Hj

bαH
†bβ
j )

+ λ3(H i
bαH

†aα
i )(Hj

aβH
†bβ
j ) + λ4(H i

aαH
†aα
j )(Hj

bβH
†bβ
i ) + h.c..

The requirement that the potential is extremal, i.e. that its first derivatives w.r.t. the
fields vanish, allow us to simplify the above expression. The tadpole equations are〈

∂V

∂H iα
a

〉
= 0

for all components H iα
a . These conditions imply several trivial relations, as well as and the

equations relating the potential parameters and the VEVs

0 = −1

2
µ2 + (p2 + q2 + u2 + v2)λ1 + p2(λ2 + λ3) + (p2 + q2)λ4,

0 = −1

2
µ2 + (p2 + q2 + u2 + v2)λ1 + q2λ2 + (q2 + u2)λ3 + (p2 + q2)λ4,

0 = −1

2
µ2 + (p2 + q2 + u2 + v2)λ1 + (u2 + v2)λ2 + (q2 + u2)λ3 + u2λ4,

0 = −1

2
µ2 + (p2 + q2 + u2 + v2)λ1 + (u2 + v2)λ2 + v2(λ3 + λ4).
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Solving yields

µ2 = λ1(p2 + q2 + u2 + v2),

λ2 = λ3 = λ4 = 0.

The potential at this point is characterized by only two parameters! Note also that since
µ2 > 0, we have λ1 > 0. Using this, we can evaluate the potential at the vacuum,

V
∣∣
Hiα
a =0

= −λ1

4
(p2 + q2 + u2 + v2)2 < 0,

a point, which, as we shall see in Section 3.4.1, is a minimum.

3.4 Mass spectrum and charges

3.4.1 Scalars

The potential terms quadratic in the fields make up the mass matrix for the scalars of the
model. Separating the fields into real and imaginary parts, H iα

a = H iα
ra + iH iα

ia , we write
the mass matrix M2

H in the basis

{H11
r1 , H

11
r2 , H

11
r3 , H

21
r1 , H

21
r2 , H

21
r3 , H

31
r1 , H

31
r2 , H

31
r3 ,

H12
r1 , H

12
r2 , H

12
r3 , H

22
r1 , H

22
r2 , H

22
r3 , H

32
r1 , H

32
r2 , H

32
r3 ,

H13
r1 , H

13
r2 , H

13
r3 , H

23
r1 , H

23
r2 , H

23
r3 , H

33
r1 , H

33
r2 , H

33
R3,

H11
i1 , H

11
i2 , . . . }

and find

(M2
H)9,9 = 4p2λ1,

(M2
H)16,16 = 4q2λ1,

(M2
H)19,19 = 4u2λ1,

(M2
H)23,23 = 4v2λ1,

(M2
H)9,16 = (M2

H)16,9 = 4pqλ1,

(M2
H)9,19 = (M2

H)19,9 = 4puλ1,

(M2
H)9,23 = (M2

H)23,9 = 4pvλ1,

(M2
H)16,19 = (M2

H)19,16 = 4quλ1,

(M2
H)16,23 = (M2

H)23,16 = 4qvλ1,

(M2
H)19,23 = (M2

H)23,19 = 4uvλ1,

with all other elements 0. This matrix is straightforwardly diagonalized, yielding only one
nonzero eigenvalue:

M2
φ = 4λ1(p2 + q2 + u2 + v2)
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The physical field φ is the linear combination

φ =
1√

u2 + v2 + p2 + q2
(uH13

r1 + vH23
r2 + pH31

r3 + qH32
r1 ).

Since this, the only nonzero mass, is positive definite (again recalling that µ2 > 0 implies
λ1 > 0), the vacuum is indeed a true minimum. Clearly, it lies at the high Trinification-
breaking scale p.

Thus, at tree level, there is only one massive scalar. The remaining 53 massless particles
have among them 15 Goldstone modes, associated with the gauge symmetry SSB, identified
below. There should also be further Goldstones associated with the breaking of the global
SSB from SU(3)f , which we have not identified.

To match with SM phenomenology, the massless Higgs bosons should acquire masses
when loop effects are taken into account. This would occur by quantum effects generating
spontaneous symmetry breaking, as described in Section 1.2.

Let us now find the charges of the scalars. From the discussion in Section 3.2, the
unbroken gauge transformation is

H iα
a →

(
eiω(−

√
3T 3
L+T 8

L)
)i
j

(
e−iω(−

√
3T 3
R+T 8

R)
)b
a
Hjα
b .

The SU(3) generators are just the Gell-Mann matrices, for which

−
√

3T 3 + T 8 =

1/3 0 0
0 −2/3 0
0 0 1/3

 ,

so, from the properties of the matrix exponential,

H iα
a →

eiω/3 e−iω2/3

eiω/3

i

j

e−iω/3 eiω2/3

e−iω/3

b

a

Hjα
b .

Since the contraction over R-indices instructs us to multiply columns of the first matrix
with the rows of the second, the RHS can be written as the matrix producteiω/3 e−iω2/3

eiω/3

H1
1 H1

2 H1
3

H2
1 H2

2 H2
3

H3
1 H3

2 H3
3

e−iω/3 eiω2/3

e−iω/3

 .

Performing this, we find the transformation properties of each element under the EM gauge
group. For example, H1

1 picks up eiω/3 from the L transformation and e−iω/3 from the R
transformation, so

H1
1 → eiω( 1

3
− 1

3
)H1

1 .
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Thus, H1
1 transforms as an object with 0 charge under U(1)Q. Similarly,

H1
2 → eiω( 1

3
+ 2

3
)H1

2 ,

so H1
2 has Q = +1. We can repeat this for each component. The EM charges of the Higgs

components are then

Q(H) =

 0 1 0
−1 0 −1
0 1 0

 .

3.4.2 Gauge symmetry Goldstone bosons

To identify the Goldstones from the breaking of the gauge symmetries, we know, from
the method developed in 1.4, to find the broken generators from the gauge boson mixing
matrix. To leading order in u,v

p,q
, the mixed gauge boson states are given in Table 2. To

reiterate, we obtain the broken generator corresponding to each massive gauge boson by
mixing the generators T aL,R corresponding to the gauge eigenstates Aa, Ba in the same way
as the latter mix into physical states, except that each TL,R must also be multiplied by the
corresponding gauge coupling gL,R. In this model, there is the additional simplification of
gL = gR = g, so all the g’s multiplying each TL,R can be pulled out. Thus, the unbroken
generator corresponding to the photon 1

2
√

2
(−
√

3(A3 + B3) + A8 + B8) is proportional to

−
√

3(T 3
L + T 3

R) + T 8
L + T 8

R, as we have already determined.
Reading off Table 2 directly, we find the broken generators to be (up to normalization)

T 5
R; T 4

R; T 5
L; T 4

L; T 7
R; T 6

R; T 7
L; T 6

L; T 2
L; T 1

L; T 2
R; T 1

R;

T 8
R − T 8

L;
√

3(T 8
L + T 8

R)− 3T 3
R + 5T 3

L; 2T 3
R +
√

3(T 8
L + T 8

R).

As per our prescription, we now apply i times these generators to the vacuum and see
which direction the vacuum is pushed. Recalling the vacuum structure

〈H i1
a 〉 =

0 0 0
0 0 0
0 0 p√

2

 ; 〈H i2
a 〉 =

 0 0 0
0 0 0
q√
2

0 0

 ; 〈H i3
a 〉 =

1√
2

u 0 0
0 v 0
0 0 0


we will do the first two calculations explicitly. Let us start with gT 5

L, the generator corre-
sponding to the mass eigenstate gauge boson A5. We have

igT 5

0 0 0
0 0 0

0 0 p/
√

2

 =
ig

2
√

2

0 0 −i
0 0 0
i 0 0

0 0 0
0 0 0
0 0 p

 =

0 0 gp

2
√

2

0 0 0
0 0 0

 ,

igT 5

 0 0 0
0 0 0

q/
√

2 0 0

 =
ig

2
√

2

0 0 −i
0 0 0
i 0 0

0 0 0
0 0 0
q 0 0

 =

 gq

2
√

2
0 0

0 0 0
0 0 0

 ,

igT 5 1√
2

u 0 0
0 v 0
0 0 0

 =
ig

2
√

2

0 0 −i
0 0 0
i 0 0

u 0 0
0 v 0
0 0 0

 =

 0 0 0
0 0 0
−gu
2
√

2
0 0

 ,
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acting on each generation of the vacuum in turn. Thus, the Goldstone direction, which is
the resultant of these pushes in field space, is, normalized to unity,

G5
L =

1√
p2 + q2 + u2

(pH11
r3 + qH12

r1 − uH33
r1 ),

where we recall the notation H iα
ra for the real part of the (i, a) component of the αth

generation H field.
Turning to T 5

R, we must take care to multiply the generator and the vacuum correctly.
The vacuum transforms in the anti-fundamental representation of SU(3)R. Thus, we need
the generator acting on it in the anti-fundamental representation as well. The generators
in the two representations are related by

TA = −T ∗F = −TT
F , (3.3)

where A stands for anti-fundamental and F for fundamental. The first equality in (3.3)
follows from, assuming a field in the fundamental transforms as

φ→ exp(iωaT aF)φ,

the transformation of the conjugate (anti-fundamentally represented) field

φ∗ → exp(iωa(−T ∗F)a)φ∗ ≡ exp(iωaT aA)φ∗;

the second equality in (3.3) follows from the SU(N) generator property TT = T ∗.
Then, the correct contraction we seek is

ig(T 5
R,A)ab〈H iα

a 〉 = −ig((T 5
R,F)T)ab〈H iα

a 〉.

Performing this, we see that this generator pushes the vacuum in the direction 0 0 0
0 0 0
− gp

2
√

2
0 0

+

0 0 0
0 0 0
0 0 gq

2
√

2

+

0 0 gu

2
√

2

0 0 0
0 0 0


and so find the Goldstone corresponding to T 5

R

G5
R =

1√
q2 + p2 + u2

(−pH31
r1 + qH32

r3 + uH13
r3 ).

Using the same methods and notation, we present the full number of Goldstone bosons
associated with the breaking of SU(3)R ⊗ SU(3)L → U(1)Q in Table 1 below.
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Table 1: Broken generators associated with the spontaneous breaking SU(3)R⊗SU(3)L →
U(1)Q and their corresponding Goldstone modes.

Broken generator Goldstone state

T 5
R

1√
q2+p2+u2

(−pH31
r1 + qH32

r3 + uH13
r3 )

T 4
R

1√
q2+p2+u2

(−pH31
i1 − qH32

i3 − uH13
i3 )

T 5
L

1√
p2+q2+u2

(pH11
r3 + qH12

r1 − uH33
r1 )

T 4
L

1√
q2+p2+u2

(pH11
i3 + qH12

i1 + uH33
i1 )

T 7
R

1√
p2+v2

(−pH31
r2 + vH23

r3 )

T 6
R

1√
q2+v2

(−qH31
i2 − vH23

i3 )

T 7
L

1√
p2+p2+v2

(pH21
r3 + qH22

r1 − vH33
r2 )

T 6
L

1√
p2+p2+v2

(pH21
i3 + qH22

i1 + vH33
i2 )

T 2
L

1√
u2+v2 (vH13

r2 − uH23
r1 )

T 1
L

1√
u2+v2 (vH13

i2 + uH23
i1 )

T 2
R

1√
q2+u2+v2

(−qH32
i2 − uH13

i2 − vH23
i1 )

T 1
R

1√
q2+u2+v2

(+qH32
r2 + uH13

r2 − vH23
r1 )

T 8
R − T 8

L
1√

4p2+q2/4+u2+v2
(2pH31

i3 + q
2
H32
i1 − uH13

i1 − vH23
i2 )

√
3(T 8

L + T 8
R)− 3T 3

R + 5T 3
L

1√
4(p2+q2)+9u2+25v2

(2pH31
i3 + 2qH32

i1 + 3uH i1
13 − 5vH23

i2 )

2T 3
R +
√

3(T 8
L + T 8

R) 1√
25q2+4(u2+v2)

(−5q2H32
i1 − 2uH13

i1 ) + 2vH23
i2
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3.4.3 Leptons

Since L transforms in the same way as H, we know immediately that

Q(L) =

 0 1 0
−1 0 −1
0 1 0

 .

The leptons do not acquire tree-level masses in this model, since the only Yukawa term
is ∼ HQLQR. If the model is to successfully recreate the SM spectrum, charged lepton
masses must be generated by quantum corrections, just as for the massless scalar bosons
discussed in the previous section.

3.4.4 Quarks

The changes in the quarks QL and QR under a full infinitesimal gauge transformation are

δQs
Li = (iωζC(T ζC)stδ

j
i − iω

ζ
L(T ζL)jiδ

s
t )Q

t
Lj

and
δQa

Rs = (iωζR(T ζR)abδ
t
s − iω

ζ
C(T ζC)tsδ

a
b )Q

b
Rt,

so when we consider the electromagnetic gauge transformation (3.2) we find

QL →

Q1
L1 Q1

L2 Q1
L3

Q2
L1 Q2

L2 Q2
L3

Q3
L1 Q3

L2 Q3
L3

e−iω/3 0 0
0 eiω2/3 0
0 0 e−iω/3


implying the EM charges

Q(QL) =

−1/3 2/3 −1/3
−1/3 2/3 −1/3
−1/3 2/3 −1/3

 ,

and

QR →

eiω/3 0 0
0 e−iω2/3 0
0 0 eiω/3

Q1
R1 Q1

R2 Q1
R3

Q2
R1 Q2

R2 Q2
R3

Q3
R1 Q3

R2 Q3
R3

 ,

yielding

Q(QR) =

 1/3 1/3 1/3
−2/3 −2/3 −2/3
1/3 1/3 1/3

 .

In order to obtain the quark mass spectrum, we collect the quark bilinear terms into a
matrix

(MQ)ij =
∂2 L Yukawa

∂Qj∂Qj

∣∣∣∣
〈H〉

,
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where Qi,j is shorthand for any (QL)αi or (QR)aα. Note that colour indices have been
suppressed; any physical state or mass found is simply three times degenerate in colour.
Then, the quark masses can be easily found by diagonalizing the matrix

M2
Q = M †

QMQ.

We find nine Dirac mass eigenstates (27 when accounting for colour; in the following we
will leave the colour degeneracy implicit). The masses are, to leading order in u,v

p,q
,

0
0

2p2y2

2q2y2

2u2y2

2u2y2

2v2y2

2v2y2

2(p2 + q2)y2


.

Thus, there are two exactly massless quarks, for which masses should be generated when
loops are taken into account in order to match any phenomenology. Among the remaining,
three masses lie at the high scale ∼ p, q (note that we do not assume any hierarchy between
p and q here), while four lie at the SM scale ∼ u, v. Assuming the massless quarks obtain
small loop masses (compared to the Trinification scale p), there are six light quarks; these
might be interpreted as the SM quarks.

If we set u = v = 0, the mixing of the states becomes transparent. The Yukawa
Lagrangian is then

L Yukawa = yεαβγH
iα
a Q

β
LiQ

aγ
R + h.c.

where the contraction over colour has been suppressed. Expanding and evaluating at the
vacuum for this simplified case, we get

L Yukawa = −y
√

2
[
Q3
L3(qQ1

R1 − pQ2
R3)− qQ1

L3Q
3
R1 + pQ2

L3Q
3
R3

]
+ h.c.

= −y
√

2
√
p2 + q2

[
Q3
L3

qQ1
R1 − pQ2

R3√
p2 + q2

+ h.c.

]
+ y
√

2q
[
Q1
L3Q

3
R1 + h.c.

]
− y
√

2p
[
Q2
L3Q

3
R3 + h.c.

]
,

which corresponds to three Dirac spinors(
Q3
L3

q(Q1
R1)†−p(Q2

R3)†√
p2+q2

)
,

(
Q1
L3

−(Q3
R1)†

)
,

(
Q2
L3

(Q3
R3)†

)
with the masses-squared

2(p2 + q2)y2, 2q2y2, 2p2y2

respectively. Clearly, these masses lie at the large Trinification-breaking and LR-breaking
scales (p and q, respectively).
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3.4.5 Gauge bosons

In the basis {A1, A2, . . . , A8, B1, B2, . . . , B8} the nonzero elements of the gauge boson mass
matrix are

(M2
GB)1,1 = g2(u2 + v2)/16,

(M2
GB)2,2 = g2(u2 + v2)/16,

(M2
GB)3,3 = g2(u2 + v2)/16,

(M2
GB)4,4 = g2(p2 + q2 + u2)/16,

(M2
GB)5,5 = g2(p2 + q2 + u2)/16,

(M2
GB)6,6 = g2(p2 + q2 + v2)/16,

(M2
GB)7,7 = g2(p2 + q2 + v2)/16,

(M2
GB)8,8 = g2(4p2 + q2 + u2 + v2)/48,

(M2
GB)9,9 = g2(q2 + q2 + v2)/16),

(M2
GB)10,10 = g2(q2 + q2 + v2)/16,

(M2
GB)11,11 = g2(p2 + q2 + v2)/16,

(M2
GB)12,12 = g2(p2 + q2 + u2)/16,

(M2
GB)13,13 = g2(p2 + q2 + u2)/16,

(M2
GB)14,14 = g2(p2 + v2)/16,

(M2
GB)15,15 = g2(p2 + v2)/16,

(M2
GB)16,16 = g2(4p2 + q2 + u2 + v2)/48,

(M2
GB)1,9 = (M2

GB)9,1 = −g2uv/8,

(M2
GB)2,10 = (M2

GB)10,2 = −g2uv/8,

(M2
GB)3,8 = (M2

GB)8,3 = g2(u2 − v2)/(16
√

3),

(M2
GB)3,11 = (M2

GB)11,3 = −g2(u2 + v2)/16,

(M2
GB)3,16 = (M2

GB)16,3 = g2(v2 − u2)/(16
√

3),

(M2
GB)8,11 = (M2

GB)11,8 = g2(2q2 − u2 + v2)/(16
√

3),

(M2
GB)8,16 = (M2

GB)16,8 = −g2(4p2 − 2q2 + u2 + v2)/48,

(M2
GB)11,16 = (M2

GB)16,11 = g2(q2 + u2 − v2)/(16
√

3),

This matrix is diagonalized to give the physical gauge boson spectrum. The phenomeno-
logically justified VEV hierarchy p � q � u ∼ v is imposed, and results, both masses
and states, are given to leading order in p,q

uv
in Table 2. The first state in Table 2, which

is massless, is identified as the photon. There are three further states that are massless in
the limit of no SM breaking u = v = 0; these are the three electroweak gauge bosons. Let
us now find the EM charge eigenstates. Aa lies in the adjoint representation of SU(3)L
and is a singlet under SU(3)R, and vice versa for Ba. Thus, the transformation properties
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Table 2: Physical SU(3)L,R gauge bosons given in terms of the gauge eigenstates A,B,
and their respecitve masses squared.

Physical eigenstate Mass-squared

1
2
√

2
(−
√

3(A3 +B3) + A8 +B8) 0

B5
g2

16
(p2 + q2)

B4
g2

16
(p2 + q2)

A5
g2

16
(p2 + q2)

B4
g2

16
(p2 + q2)

B7
g2

16
p2

B6
g2

16
p2

A7
g2

16
(p2 + q2)

A6
g2

16
(p2 + q2)

A2
g2

16
(v2 + u2)

A1
g2

16
(v2 + u2)

B2
g2

16
q2

B1
g2

16
q2

1√
2
(B8 − A8) g2

96
(16p2 + q2)

1
2
√

10
(
√

3(A8 +B8)− 3B3 + 5A3) g2

10
(v2 + u2)

1√
10

(2B3 +
√

3(A8 +B8)) 5g2

32
q2
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for these gauge bosons are

Aa → −fabcωbLAc,
Ba → −fabcωbRBc,

where we temporarily relax our assignment of a, b, c as SU(3)R indices and simply use
them generically. The structure constants are defined through [T a, T b] = ifabcT c. Under
the electromagnetic gauge transformation (3.2) in particular,

Aa → −fa3cωAc + fa8c 1√
3
ωAc,

Ba → −fa3cωBc + fa8c 1√
3
ωBc,

The only nontrivial transformations are then

δA1 = ωA2,

δA2 = −ωA1,

δA6 = −ωA7,

δA7 = ωA6,

and similarly for B. It is clear that any gauge boson state containing none of (A,B)1,2,6,7

are EM singlets. In analogy with the case of the Standard Model, we construct charge
eigenstates out of the components with the same mass that transform into each other.
Thus,

δ(A6 − iA7) = −iω(A6 − iA7),

δ(A6 + iA7) = +iω(A6 + iA7),

and

δ(B6 − iB7) = −iω(B6 − iB7),

δ(B6 + iB7) = +iω(B6 + iB7)

form the states W ′±
L and W ′±

R with masses g
√
p2 + q2/4 and gp/4, respectively. In a similar

vein, we find the states

δ(A1 − iA2) = −iω(A1 − iA2),

δ(A1 + iA2) = +iω(A1 + iA2),

δ(B1 − iB2) = −iω(B1 − iB2),

δ(B1 + iB2) = +iω(B1 + iB2)

which we denote W±
L and W±

R , respectively. W±
R has the mass gq/4 and W±

L is identified
as the SM W±, with (SM scale) mass g

√
v2 + u2/4.
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3.5 Conclusions and outlook

Having concluded the initial analysis of the model, we are convinced that it deserves more
detailed study. We will here collect a few comments on our results, and give a brief overview
of the avenues of study which may be pursued.

First of all, it should be noted that, as we saw, SU(3)f is fully broken by this particular
vacuum. We have, however, also been able to construct vacua which leave global U(1)
symmetries unbroken (placing the SM-breaking VEVs u, v on the off-diagonal instead of the
diagonal). Although this particular vacuum spontaneously broke the Trinification gauge
group down to a U(1), the scalar components which get VEVs were not neutrally charged
under it; the group is not electromagnetism. It should be possible to construct another
vacuum (or perhaps change shift the representations of the fields) so that the charges are
sensible, and there are unbroken global symmetries in addition. There are accidental global
symmetries in the SM; U(1)B−L and the custodial SU(2) symmetry on the scalar sector,
for example. Unbroken remnants of the broken SU(3)f might be a compelling origin of
these.

Furhtermore, the breaking of the global family symmetry should engender Goldstone
bosons. We have not identified them, but doing so should be straightforward following the
prescription we have developed.

As we saw, the tree-level masses for all but one scalar, all leptons and six quarks are zero.
This means that mass terms need to be regenerated at the 1-loop level, via the radiative
symmetry breaking process described in Section 1.2. Obviously, further investigation into
whether or not this happens is needed. If the radiatively generated masses of the six
quarks are small enough, they might correspond to the SM quarks, which is an interesting
possibility.

An obvious area of study is the potential minimum at 1-loop and its stability. Work
on this has commenced. A SARAH model file has also been developed for this trinified
model; it is not included in this thesis since it is not completely done, but SARAH might
help with such vacuum analysis.

Finally, we add that several Trinification variants are currently being studied by R.
Pasechnik et al. Whether the model is supersymmetric or not; the form of the scalar
potential and the various modes of symmetry breaking employed, all contribute to give the
theory a promising array of different attributes.
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4 Summary

We have studied two LR models; the SU(3)C⊗SU(2)L⊗SU(2)R⊗U(1)B−L MLRM, and a
trinified model with gauge group SU(3)L⊗SU(3)L⊗SU(3)R⊗Z3 with an additional, global,
SU(3)f family symmetry. We have written the Lagrangian for each model, and derived
masses, charges and representations of the particles. We have also implemented SARAH
model files which should prove useful to future studies. The MLRM has been extensively
studied previously; while the trinified model certainly requires further research, we find
both models theoretically attractive and phenomenologically viable.
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A MLRM SARAH model file

Model ‘Name = ”MLRM” ;
Model ‘ NameLaTeX =”MLRM” ;
Model ‘ Authors = ”E. Corr igan ” ;
Model ‘ Date = ”2015−03−08”;

(∗ −−−− Gauge Groups −−−− ∗)

Gauge [ [ 1 ] ] = {B, U[ 1 ] , bminl , gBL , Fa l se } ;
Gauge [ [ 2 ] ] = {WL, SU [ 2 ] , l e f t , g1 , True } ;
Gauge [ [ 3 ] ] = {WR, SU [ 2 ] , r i ght , g2 , True } ;
Gauge [ [ 4 ] ] = {G, SU [ 3 ] , co lo r , g3 , Fa l se } ;

(∗ −−−− Matter F i e l d s −−−− ∗)

FermionFie lds [ [ 1 ] ] = {qL , 3 , {uL , dL} , 1/3 , 2 , 1 , 3} ;
FermionFie lds [ [ 2 ] ] = {qR, 3 , { conj [uR ] , conj [dR]} , −1/3, 1 ,
−2, −3};

FermionFie lds [ [ 3 ] ] = { lL , 3 , {vL , eL} , −1, 2 , 1 , 1} ;
FermionFie lds [ [ 4 ] ] = { lR , 3 , { conj [ vR ] , conj [ eR ]} , 1 , 1 , −2,

1} ;

S c a l a r F i e l d s [ [ 1 ] ] = {phi , 1 , {{phi10 , phi1p } ,{phi2m , phi20 }} ,
0 , 2 , −2, 1} ;

S c a l a r F i e l d s [ [ 2 ] ] = {delL , 1 , {{delLp / Sqrt [ 2 ] , delLpp } ,{ delL0 ,−
delLp / Sqrt [ 2 ] } } , 2 , 3 , 1 , 1} ;

S c a l a r F i e l d s [ [ 3 ] ] = {delR , 1 , {{delRp/ Sqrt [ 2 ] , delRpp } ,{ delR0 ,−
delRp/ Sqrt [ 2 ] } } , 2 , 1 , 3 , 1} ;

NameOfStates={GaugeES ,EWSB} ;

(∗ Before EWSB ∗)

DEFINITION [ GaugeES ] [ LagrangianInput ]=
{

{LagHC, {Overwrite−>True , AddHC−>True }} ,
{LagNoHC,{Overwrite−>True , AddHC−>False }}

} ;
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(∗ −−−− Sca la r p o t e n t i a l −−−− NOTE: SARAH warns about charge
nonconservat ion f o r the v e r t i c e s below , but they are
contracted c o r r e c t l y . ∗ )

LagNoHC = −(−mu12 phi . conj [ phi ] − mu22 epsTensor [ l e f 2 , l e f 1 ]
epsTensor [ r ig2 , r i g 1 ] conj [ phi ] . conj [ phi ] − mu22 epsTensor [ l e f 2
, l e f 1 ] epsTensor [ r ig2 , r i g 1 ] phi . phi − mu32 delL . conj [ delL ] −
mu32 delR . conj [ delR ] + lambda1 phi . conj [ phi ] . phi . conj [ phi ] +
lambda2 epsTensor [ l e f 2 , l e f 1 ] epsTensor [ r ig2 , r i g 1 ] epsTensor [
l e f 4 , l e f 3 ] epsTensor [ r ig4 , r i g 3 ] conj [ phi ] . conj [ phi ] . conj [ phi ] .
conj [ phi ] + lambda2 epsTensor [ l e f 1 , l e f 2 ] epsTensor [ r ig2 , r i g 1 ]
epsTensor [ l e f 3 , l e f 4 ] epsTensor [ r ig4 , r i g 3 ] phi . phi . phi . phi +
lambda3 epsTensor [ l e f 1 , l e f 2 ] epsTensor [ r ig2 , r i g 1 ] epsTensor [
l e f 3 , l e f 4 ] epsTensor [ r ig4 , r i g 3 ] conj [ phi ] . conj [ phi ] . phi . phi +
lambda4 epsTensor [ l e f 2 , l e f 1 ] epsTensor [ r ig2 , r i g 1 ] Delta [ l e f 3 ,
l e f 4 ] Delta [ r ig3 , r i g 4 ] conj [ phi ] . conj [ phi ] . phi . conj [ phi ] +
lambda4 Delta [ l e f 1 , l e f 2 ] Delta [ r ig1 , r i g 2 ] epsTensor [ l e f 4 , l e f 3 ]

epsTensor [ r ig4 , r i g 3 ] phi . conj [ phi ] . phi . phi + rho1 delL . conj [
delL ] . delL . conj [ delL ] + rho1 delR . conj [ delR ] . delR . conj [ delR ] +

rho2 delL . delL . conj [ delL ] . conj [ delL ] + rho2 delR . delR . conj [
delR ] . conj [ delR ] + rho3 delL . conj [ delL ] . delR . conj [ delR ] + rho4

delL . delL . conj [ delR ] . conj [ delR ] + rho conj [ delL ] . conj [ delL ] .
delR . delR + alpha1 phi . conj [ phi ] . delL . conj [ delL ] + alpha1 phi .
conj [ phi ] . delR . conj [ delR ] + alpha2 epsTensor [ l e f 2 , l e f 1 ]
epsTensor [ r ig2 , r i g 1 ] Delta [ r ig3 , r i g 4 ] Delta [ r ig3b , r i g4b ] phi .
phi . delR . conj [ delR ] + alpha2 epsTensor [ l e f 2 , l e f 1 ] epsTensor [
r ig2 , r i g 1 ] Delta [ l e f 3 , l e f 4 ] Delta [ l e f 3b , l e f 4 b ] phi . phi . delL .
conj [ delL ] + alpha2 epsTensor [ l e f 2 , l e f 1 ] epsTensor [ r ig2 , r i g 1 ]
Delta [ r ig3 , r i g 4 ] Delta [ r ig3b , r i g4b ] conj [ phi ] . conj [ phi ] . delR .
conj [ delR ] + alpha2 epsTensor [ l e f 2 , l e f 1 ] epsTensor [ r ig2 , r i g 1 ]
Delta [ l e f 3 , l e f 4 ] Delta [ l e f 3b , l e f 4 b ] phi . phi . delL . conj [ delL ] +
alpha3 Delta [ l e f 1 , l e f 4 ] Delta [ l e f 2 , l e f 3 ] Delta [ l e f 3b , l e f 4 b ]
Delta [ r ig1 , r i g 2 ] phi . conj [ phi ] . delL . conj [ delL ] + alpha3 Delta [
l e f 1 , l e f 2 ] Delta [ r ig1 , r i g 3 ] Delta [ r ig3b , r i g4b ] Delta [ r ig2 , r i g 4
] phi . conj [ phi ] . delR . conj [ delR ] (∗ + beta1 Delta [ l e f 1 , l e f 4 b ]
Delta [ l e f 3 , l e f 4 ] Delta [ r ig2 , r i g2b ] Delta [ r ig1 , r i g 3 ] phi . delR .
conj [ phi ] . conj [ delL ] + beta1 Delta [ l e f 1 , l e f 3 ] Delta [ l e f 3b , l e f 3
] Delta [ r ig1 , r i g4b ] Delta [ r ig3 , r i g 4 ] conj [ phi ] . delL . phi . conj [
delR ] + beta2 p h i t i l . delR . conj [ phi ] . conj [ delL ] + beta2 conj [
p h i t i l ] . delL . phi . conj [ delR ] + beta3 phi . delR . conj [ p h i t i l ] . conj
[ delL ] + beta3 conj [ phi ] . delL . p h i t i l . conj [ delR ] ∗ ) ) ;
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(∗ −−−− Yukawa Lagrangian −−−− NOTE: SARAH warns about charge
nonconservat ion f o r the v e r t i c e s below , but they are
contracted c o r r e c t l y . ∗ )

LagHC= −(h l conj [ phi ] . lL . lR + h l t i l phi . lL . lR + h q t i l phi . qL . qR
+ hq conj [ phi ] . qL . qR) ;

(∗ −−−− VEVs −−−− ∗)

DEFINITION [EWSB] [ VEVs]=
{
{phi10 , {vevk , 1/ Sqrt [ 2 ] } , {Aphi10ps , I / Sqrt [ 2 ] } , { hphi10s , 1/

Sqrt [ 2 ] } } ,
{phi20 , {vevkprime , 1/ Sqrt [ 2 ] } , {Aphi20ps , I / Sqrt [ 2 ] } , { hphi20s ,

1/ Sqrt [ 2 ] } , { alphakprime }} ,
{delL0 , {vevL , 1/ Sqrt [ 2 ] } , {AdelL0ps , I / Sqrt [ 2 ] } , { hdelL0s , 1/

Sqrt [ 2 ] } , { betaL }} ,
{delR0 , {vevR , 1/ Sqrt [ 2 ] } , {AdelR0ps , I / Sqrt [ 2 ] } , { hdelR0s , 1/

Sqrt [ 2 ] } }
} ;

(∗ −−−− Matter s e c t o r mixing −−−− ∗)

DEFINITION [EWSB] [ MatterSector ]=
{
{{{dL} , { conj [dR]}} , {{DL,Vd} , {DR,Ud}}} ,
{{{uL} , { conj [uR]}} , {{UL,Vu} , {UR,Uu}}} ,
{{{eL} , { conj [ eR ]}} , {{EL, Ve} , {ER, Ue}}} ,
{{{vL} , { conj [ vR]}} , {{NuL,VNu} ,{NuR, UNu}}} ,

{{hphi10s , hphi20s , hdelR0s , hdelL0s , Aphi10ps , Aphi20ps , AdelR0ps ,
AdelL0ps } ,{ hreal im , Urealim }} ,

{{phi1p , conj [ phi2m ] , delRp , delLp } ,{ s ingchar , Usingchar }} ,
{{delRpp , delLpp } ,{ doubchar , Udoubchar}}
} ;

(∗ −−−− Gauge s e c t o r mixing −−−− ∗)

DEFINITION [EWSB] [ GaugeSector ] =
{
{{VWL[ 3 ] ,VWR[ 3 ] ,VB} ,{VPP, VZ1 , VZ2} ,UZ} ,
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{{VWL[ 1 ] ,VWL[ 2 ] ,VWR[ 1 ] ,VWR[ 2 ] } , {VWp1, conj [VWp1] ,VWp2, conj [VWp2
]} ,UW}

} ;

(∗ −−−− Dirac s p i n o r s −−−− ∗)

DEFINITION [EWSB] [ Di racSp inors ]=
{

Fd −>{ DL, conj [DR]} ,
Fe −>{ EL, conj [ER]} ,
Fu −>{ UL, conj [UR]} ,
Fv −>{ NuL, conj [NuR]}

} ;

DEFINITION [ GaugeES ] [ Di racSp inors ]=
{

Fd1 −>{ dL , 0} ,
Fd2 −>{ 0 , dR} ,
Fu1 −>{ uL , 0} ,
Fu2 −>{ 0 , uR} ,
Fe1 −>{ eL , 0} ,
Fe2 −>{ 0 , eR} ,
Fv1 −>{ vL , 0} ,
Fv2 −> { 0 ,vR}
} ;
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