
LU TP 15-21
May 2015

Chirally Symmetric Technicolor Model: A possible origin of the
Higgs Boson

Jacob Taxén

Department of Astronomy and Theoretical Physics, Lund University

Bachelor thesis supervised by Roman Pasechnik



Abstract

This thesis investigates a possible extension to the Standard Model: the Chirally Symmetric
Technicolor Model. The motivation is to explain the origin of the electroweak interaction
scale by introducing a new interaction. The thesis is based on the two-flavour Technicolor
model presented in ”Chiral-Symmetric Technicolor with Standard Model Higgs boson” by
Pasechnik et. al. [1], and extends it to the three flavour case with a composite Higgs
sector. The model is based on a low energy effective field theory known as the Linear
Sigma Model, and borrows several properties from the approximate flavour SU(3) chiral
symmetry of Quantum Chromodynamics. A physical Lagrangian is derived and using this
a possible signature for discovery in the H → γγ channel is calculated.
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Populärvetenskaplig sammanfattning

Partikelfysiken utforskar de allra minsta best̊andsdelarna av universum. Vissa partiklar —
kvarkar och elektroner — är det som atomer best̊ar av, och de är stabila, men det finns
många andra partiklar som är mycket sv̊ara att skapa, och som bara kan existera under
en mycket kort period innan de faller sönder. Allt vi vet om de här partiklarna har vi
samlat ihop och satt samman till en teori som heter Standardmodellen. Standardmodellen
kan förklara ganska mycket, till exempel varför partiklar f̊ar massa. Vissa partiklar är
masslösa, medan andra är massiva, och de som är massiva är det för att de interagerar
med Higgsfältet, som finns överallt. Till Higgsfältet hör en partikel: Higgsbosonen.

Vad vi vill veta är varför Higgsfältet har just det värde det har. Ett svar p̊a denna fr̊aga
är att det skulle kunna finnas en helt ny grupp av partiklar som vi inte har upptäckt än,
för att de kräver s̊a mycket energi för att kunna bli upptäckta. Om de skulle finnas g̊ar det
att beräkna vissa av deras egenskaper, till exempel hur de interagerar med varandra, och
med de vanliga partiklarna, och hur det skulle se ut när man upptäcker dem. Just detta
har gjorts i denna avhandling: jag har undersökt en teori om att det finns en oupptäckt
sorts partiklar som kallas Technikvarkar, och försökt lista ut hur de skulle bete sig om de
fanns.
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1 Background

The Standard Model is currently the predominant theory used to describe the fundamental
particles and how they interact with each other. The foundation of the Standard Model
was laid out in the late fifties and early sixties. The quark model was proposed in 1964 by
Murray Gell-Mann and George Zweig and got experimental support four years later. In
the early seventies some theorists had predicted the existence of the charm quark and when
it was found in 1974, the Standard Model quickly became the leading theory of particle
physics. The model has over the years been very successful in making predictions, such as
the existence of the top quark and the Higgs boson, and is very consistent with experimental
results. It does however have some flaws and problems. For example, it is believed to be
an effective field theory in the sense that it does only work well in energy scales we are able
to measure, but breaks down at high enough energies. It does not explain the observed
dark matter and baryon asymmetry in the universe. It does not include gravity, one of the
four known fundamental forces, and there are plenty of free parameters which can not be
derived from theory but have to be measured. Another unsolved question is what is called
the problem of naturalness, which refers to the unexplained huge difference between the
different interaction scales. The motivation of the Technicolor models comes from trying
to find an origin of the electroweak interaction scale, from a new hidden strongly coupled
dynamics at high energies.

1.1 The Standard Model Higgs boson

The massive particles of the Standard Model get their masses by means of the Higgs
mechanism of spontaneous electroweak symmetry breaking, which is a breaking of the
SU(2)L ⊗ U(1)Y symmetry down to electromagnetic U(1)em symmetry. The field respon-
sible for this breaking is the Higgs field, and the particle associated with this field is the
Higgs boson, a scalar boson with the approximate mass mH ≈ 125 GeV. The existence
of such a field was first proposed in 1964 by several physicists, and in 2012 an announce-
ment was made that a particle in the predicted mass range had been discovered at the
ATLAS [2] and CMS [3] experiments at the LHC. This discovery led to the Nobel Prize
in Physics being awarded to François Englert and Peter Higgs — two of the persons that
first described the Higgs mechanism — in 2013. As of 2013 the measurements of the mass
made at ATLAS [4] concluded it to be

mh = 125.5± 0.2(stat)+0.5
−0.6(sys) GeV

In hadron colliders, there are four main mechanisms that produces the Higgs boson: gluon
fusion, vector boson fusion, Higgs-strahlung or associated production with top quarks.
These processes are all depicted in Feynman diagrams in figure 1. The mechanism with
the largest cross section is the gluon fusion process, in which two gluons fuse and produce
a Higgs boson via top quark loops. At a center of mass energy

√
s = 14 TeV, the cross

section for this process is σ = 49.8+9.96
−7.47 pb. Other quark loops contribute as well, but
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Figure 1: The four Higgs boson production mechanisms.

the coupling between the quark and the Higgs boson is proportional to the mass, and the
top quark mass is big enough that contributions from the other quarks are negligible. The
second most common process is the vector boson fusion, in which a quark and an antiquark
are scattered. They exchange a weak boson from which a Higgs boson is radiated. This
process has the cross section σ = 4.18+0.13

−0.13 pb. The Higgs-strahlung process contains a
quark pair that collide and form a vector boson, from which the Higgs particle is radiated,
and the fourth is a process in which the Higgs boson is radiated from top quarks. These
two processes both have a cross section less than 2 pb. The Higgs boson could also be
produced in e+e− colliders, mainly through the process e+e− → ZH.

The total width of the Higgs boson is ΓH = 4.1 · 10−3 GeV and there are several decay
channels for the Higgs boson. The most common ones are H → bb̄ and H → W+W−.
The H → bb̄ channel, together with H → τ+τ−, with branching ratios 5.8 · 10−1 and
6.3 · 10−2 respectively, are common decay channels but not very useful as these channels
are disturbed by large background signals. The H → W+W− channel has the branching
ratio 2.2 · 10−1, and is thus the second most common decay channel, but as the W bosons
decay, they produce neutrinos which can not be detected in the accelerators, making it
hard to trace the process backwards to get an accurate measurement of the Higgs mass.

The most relevant decay channel for this thesis is H → γγ, with a branching ratio
of 2.28+0.11

−0.11 · 10−3 [5]. The cross section has a narrow peak embedded in a background
consisting mainly of γγ events, particle jets and dijets. A typical background contributing
is the quark loop decay depicted in figure 3. In this channel the boson decays via loops into
two photons, mainly through W loops, as is shown in figure 2. These loops are sensitive
to contributions from new physics; comparing the decay width predicted by the Standard
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Figure 2: Three typical decay modes of the Higgs boson, via fermion and weak boson loops.

Model with predictions from Standard Model extensions is a good way of testing new
theories [4, 5, 6]. Measurements of this channel has been made at both ATLAS and CMS.
Results from the measurements made at ATLAS is displayed in figure 4.

1.2 The naturalness problem

The naturalness problem considers the unexpectedly vast differences in between the dif-
ferent energy scales, foremost the difference between the energy scale that characterises
weak interactions, about the size of the Higgs vacuum expectation value (vev) v = 246
GeV [7], and the scale that characterises gravitational processes, the size of the Planck
mass MP = 1.22 · 10−19 GeV [7].

The masses of the Standard Model particles comes from interactions with the Higgs
field. In vacuum, virtual particles are created and destroyed due to quantum fluctuations,
and these interact with the Higgs field with a strength proportional to the available energy.
The Higgs boson then receives an extra contribution to its mass which, if there is enough
energy available, suggests that both the mass and the vev are unstable. Other parameters
of the Standard Model could be perturbed by quantum fluctuations as well, but are ”pro-
tected” by so called custodial symmetries which prevent radiative corrections to change its
value. The Higgs mass is not protected by such a symmetry, but a solution to this problem
would be to introduce this symmetry, together with new interactions at an energy scale
about a TeV, which is what the technicolor models do [8, 9, 10]
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Figure 3: A box diagram showing a typical background contribution in the Hγγ channel.
The gluons fuse via fermion loops into photons.

1.3 The Technicolor Models

Technicolor models introduce new particles called technifermions and new interactions at
the scale ΛTC which in many aspects resemble the interactions in Quantum Chromodynam-
ics (QCD). In a model consisting of NTC techniquarks, a new gauge group, SU(NTC), is
introduced, and together with it N2

TC − 1 new gauge bosons called technigluons. The tech-
niquarks are assumed to be confined, just as quarks, and form bound states: technimesons
and technibaryons. In vacuum they will form a condensate

〈
Q̄Q
〉
∼ Λ3

TC

which gives rise to constituent techniquark masses of order ΛTC . This condensate is analo-
gous to condensates formed in QCD, which is described in reference [11]. There are several
technicolor models with different components and which makes different predictions. Here
follow a short review of a couple of them [8].

1.3.1 Minimal TC Model

The first of these models, introduced in 1977 by Weinberg and Susskind, was the Minimal
Technicolor model, whose gauge group is SU(NTC) ⊗ SU(3)C ⊗ SU(2)L ⊗ U(1)Y . The
model includes at least two technicolor flavours which form a doublet in isospace. The
Dirac doublet is split up in a left- and a right-handed chiral weak doublet.

Since the technimodel in much extent is analogous to QCD, some of the properties of
this new sector can be found by rescaling. Starting from the scaling factors fπ ≈ 93 MeV
and ΛQCD ≈ 200 MeV, the scale on which the new interactions take place is approximately

ΛTC ≈ ΛQCD

√
3v

fπ
√
NDNT

and the scales are connected to the electroweak scale as

v ≈ fπ

√
NDNT

3

(
ΛTC

ΛQCD

)
(1.1)
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Figure 4: In the upper panel the invariant mass distribution of diphoton events measured
at ATLAS is presented. The data consists of combined results from both 7 TeV and 8 TeV
measurements. A computed Standard Model Higgs signal and a background is fitted to
the data. In the lower panel, the deviation of the measurements from the fit is shown. The
figure is taken from [4].

where ND is the number of technicolor doublets and NT is the number of triplets included
in the model and v is the vacuum expectation value associated with the Higgs field, and
which is introduced in section 2.1. Using NT = 4 and ND = 1 for example, the scale
becomes ΛTC ≈ 460 GeV [8].

Performing a renormalisation of the running coupling of the technicolor sector to get
the ratio between the technicolor scale and the QCD scale, and comparing to equation (1.1)
predicts a vacuum expectation value that lies near the actual measured value. The biggest
problem with this model is however that it does not contain any way for the techniquarks
to decay into ordinary matter but suggests that the lightest techniquark hadrons are stable.
Extensions of this model often include a way for the techniquarks to decay.

1.3.2 Extended TC models

There are several extended technicolor models which share some general traits. This section
goes through the common properties of these models and then describe two specific ones.
The shortcomings of the minimal techniquark model is mainly two: it does not allow
technifermions to decay, and it does not contain any coupling to leptons or quarks. If
technifermions were stable, they would form technibaryons which would be present on
Earth in much larger densities than made measurements allow for [12]. In the extended
models the quark and lepton masses rise from the electroweak symmetry breaking and the
symmetry is broken by the technicolor condensate.

To allow for technifermion decay currents like
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Q̄L,Rγ
µφL,R

are introduced. Here Q represent a techniquark and φ a quark, and the L and R denote
their respectively helicity. Similar terms are introduced for the leptons. In order to contain
these interactions a large gauge group is introduced. For example if one would like to
extend the example of a minimal technicolor model above, with ND = 1 and NTC = 4, the
gauge group accommodating all the techniquark-quark and techniquark-lepton interactions
would be SU(16). On top of that the chiral group must be included so the total gauge
group would be SU(16) ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)Y . The fermions are arranged in two
16 multiplets in fundamental representation under SU(16), where one is a doublet under
SU(2)L and singlet under SU(2)R and vice versa [8].

A new theory must comport with available experimental data, and one way to decide
how well a new model fits to actual measurements is to do an electroweak precision test.
The Peskin-Tacheuki parameters, S, T and U , are used to parametrise contributions to
electroweak radiative corrections that a new model would give rise to. They are defined
from the mass of the top quark and the Higgs boson masses and have the values [13]

S = 0.00+0.11
−0.10

T = 0.02+0.11
−0.12

U = 0.08+0.11
−0.11

New physics would alter these values but they must be kept within the margin of error. The
S parameter is sensitive to the number of weak isodoublets and the number of technicolors,
and both the minimal and extended models yield contributions to this parameter that put
them outside the margin [8, 1].
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2 Introduction

The Standard Model is formulated in terms of a Lagrangian density, or a Lagrangian as
it will be referred to in this thesis. The concept of Lagrangians is briefly reviewed in
appendix A.2 and the Standard Model is shortly summarised in appendix B.

The concept of symmetry breaking is something this thesis to a great extent is centered
around, and this is therefore elaborated on below. First the idea behind the Higgs field
is developed. This scalar field has a symmetry that is spontaneously broken which gives
rise to massive bosons. This symmetry breaking and how it induces mixing in the W i

µ

and Bµ fields is explained as the same procedure later is used to find how the technimeson
fields mix. Symmetry breaking is related to the Goldstone theorem which is gone through
together with dynamical symmetry breaking which is of importance to this certain techni-
color model. Finally the Linear Sigma Model is introduced, as an effective field theory on
which the interactions of our technicolor model is based.

2.1 The Higgs field

The Lagrangian for the Higgs field is

LHiggs = (DµH)†(DµH)− µ2H†H− λ(H†H)2 (2.1)

The Higgs field is a SU(2) doublet

H =

(
H+

H0

)
The two components are complex fields that can be written as

H+ = φ1+iφ2√
2

H0 = φ3+iφ4√
2

which means that the term H†H is

H†H =
(
H+† H0† )( H+

H0

)
=
φ2

1 + φ2
2 + φ2

3 + φ2
4

2
(2.2)

The above equation constitutes a symmetry in the four fields: exchanging two fields with
each other would not affect the Lagrangian. The potential energy of the field is

V = µ2
(
H†H

)
+ λ

(
H†H

)2
(2.3)

To find the minimum the above expression is derived and set to zero:

∂V

∂φ1

=
(
µ2 + λ(H†H)

)
φ1 = 0

Deriving with any other of the four field components will yield similar results. H†H is
positive definite, so the minimum of the potential depends on the value of µ2. If µ2 > 0,

10



V

φ3

φ4

V

Figure 5: The general shape of the potential of the Higgs field plotted in two dimensions
in arbritary units. The minimum of the potential is not in φ3 = φ4 = 0 but in a circle
around the origin.

then the only extremum is when φ1 = φ2 = φ3 = φ4 = 0, which is a minimum. However,
if µ2 < 0 there is a minimum when

H†H =
−µ2

2λ
=
v2

2
(2.4)

Here the quantity v =
√
−µ2/λ is introduced. This is the vacuum expectation value (vev)

of the Higgs field. In this case, the potential will not have its minimum in the origin, but
in infinetly many points forming a circle around it. The potential is shown plotted in two
dimensions in figure 5. As there are four independent parameters in equation (2.4) we must
choose a point in order to proceed. The choice will be φ3 = v+h+iη and φ1 = φ2 = φ4 = 0.
h and η are expansions around this minimum, so that

H =
1√
2

(
0

v + h+ iη

)
(2.5)

Exitations of the h field corresponds to an increase of the potential. Exitations of the η field
corresponds to a rotation along the minimum cirle. If the Higgs doublet, as it is written
above, is reintroduced into the Higgs Lagrangian and expanded, one will see that the η
field corresponds to a massless particle. This particle is known as a Goldstone boson. The
Goldstone theorem states that whenever a symmetry is spontaneosly broken, there will be
one Goldstone boson corresponding to every generator that breaks the symmetry. We are
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however free to choose which gauge to work in, and can choose to set η = 0. The Goldstone
particle only has a logitudinal polarisation state, but by choosing this gauge, this degree
of freedom is aquired by the massive vector bosons [14, 15]. Studying the kinetic term we
see that

(DµH)† (DµH) = H†D†µDµH

will yield new interaction terms from which gauge boson masses arise. These terms are

H†
(
ig
Y

2
Bµ + ig′

τi
2
W i
µ

)†(
ig
Y

2
Bµ + ig′

τi
2
W i
µ

)
H

Putting Y = 1 and using the field of equation (2.5), with h → 0, the above expression
could be rewritten into

1

8
v2g′2

(
(W 1

µ)2 + (W 2
µ)2
)

+
1

8
v2
(
gBµ + g′W 3

µ

)2

If we use W 1
µ and W 2

µ to define charged states W±
µ = (W 1

µ∓+iW 2
µ)/
√

2 and a neutral state
W 0
µ = W 3

µwe see that the first term can be written as

1

8
v2g′2

(
(W 1

µ)2 + (W 2
µ)2
)

=

(
vg′

2

)2

W+
µ W

−µ

The term vg′/2 is interpreted as a mass term, and thus the W± bosons have a mass MW =

vg′/2. The term 1
8
v2
(
gBµ + g′W 3

µ

)2
is a non-diagonal matrix, but can be diagonalised by

a basis change. If we introduce a new field

Zµ =
gBµ + g′W 0

µ√
g2 + g′2

the term is diagonalised to

1

8
v2
(
gBµ + g′W 3

µ

)2
=

1

2

(
v

2
√
g2 + g′2

)2

ZµZ
µ

This field is the Z boson field. The mass of the particle is MZ = v

2
√
g2+g′2

. We may also

construct the field who will be orthogonal to the Zµ field as:

Aµ =
g′Bµ − gW 0

µ√
g2 + g′2

This is the field of the photon, the massless particle that mediates the electromagnetic
force.

The change of basis between Wµ, Bµ and Zµ, Aµ can be written as a rotation:
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Figure 6: One dimensional representations of spontaneously broken potentials to arbritrary
units. In figure 6a the potential does not contain any source term, making the number
of minima points infinite. In figure 6b the source term is added which tilts the potential.
This potential has only one minimum.

(
Zµ
Aµ

)
=

(
cos θW sin θW
− sin θW cos θW

)(
W 0
µ

Bµ

)
(2.6)

This angle θW is the Weinberg angle or the weak mixing angle. The ratio between the W
and Z boson masses is

MW

MZ

= cos θW

To sum up this is the electroweak symmetry breaking that give rise to the masses of the mas-
sive gauge bosons. The Higgs mechanism is also responsible for the masses of the fermions,
through a different process: the Yukawa terms, which are reviewed in appendix B.3.

2.2 Dynamical symmetry breaking

In the electroweak symmetry breaking, the symmetry is broken when one of the minimum
points are chosen, but we are however free to choose which point. A one dimentional
representation of this potential is shown in figure 6a. This potential requires that µ2 < 0.
The techniquarks form a vacuum condensate, which if using the Linear Sigma Model
(section 2.4 ) corresponds to adding a linear term to the potential. In this way the scalar
vev acquire a dynamical interpretation in terms of a techniquark condensate. In figure 6b
the same potential is plotted as in figure 6a but with a linear term added to it. The
result is that the whole potential is tilted and that there actually is only one single unique
minimum point in the potential.

Earlier the symmetry breaking gave rise to Goldstone bosons, which were massless
as exitations of them corresponded to movements along a minimum, requiring no extra
energy. When this linear term is present, the Goldstone bosons aquire a small mass and
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are therefore refered to as pseudo-Goldstone bosons. This dynamical symmetry breaking
also has the consequence that the constant µ2 no longer is needed. It is introduced in
equation (2.3) as it is required for the symmetry to break, and the Higgs vev squared is
proportional to it. With the linear term, the potential is asymmetric regardless of whether
µ2 is positive, negative or zero, and particles that gain mass from a dynamicaly broken
symmetry does so even without it.

2.3 The chiral transform

The most important transform for this thesis is the chiral transform [16]

U5 = e−ig5γ
5 1
2
τiεi (2.7)

which is a transform that operates in flavour space, γ5 is given by equation (A.5) and g5

is some constant. If a Lagrangian is invariant under a chiral transform we have a chiral
symmetry. The transform matrix U5 satisfy the relation

γµU5 = U†5γ
µ

which means that the field transform as

ψ → ψ′ = U5ψ

ψ̄ → ψ̄′ = ψ†U†5γ
0 = ψ†γ0U5 = ψ̄U5

and the kinetic term of the Dirac Lagrangian in equation (A.4) will transform as

iψ̄U5γ
µ∂µU5ψ = iψ̄U5U

†
5γ

µ∂µψ = iψ̄γµ∂µψ (2.8)

Thus the kinetic term is invariant under chiral transforms. The mass term is however not
invariant under this transform:

mψ̄′ψ′ = mψ̄U5U5ψ 6= mψ̄ψ

In QCD the Dirac Lagrangian is therefore not chirally symmetric for massive particles.
One can though consider the so called chiral limit, where the kinetic term is much bigger
than the potential so that the mass term can be neglected, in which case the symmetry
is conserved. This is why the chiral symmetry only is considered to be an approximate
symmetry.

The QCD Lagrangian, equation (B.9), contains a Dirac term which is rewritten as

L = q̄iγµDµq − q̄Mq

where the quarks are put together in a column vector:
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q =

(
u
d

)
or q =

 u
d
s


for the two and three flavour case (more flavours could also be added). The mass matrix
is in the three flavour case

M =

 mu 0 0
0 md 0
0 0 ms


If we rewrite equation (B.9) with the use of the operators in equation (A.6) we split the
quark fields into their left and right handed projections:

L = q̄Liγ
µDµqL + q̄Riγ

µDµqR − q̄LMqR − q̄RMqL (2.9)

In the chiral limit, whenM = 0, we see that the symmetry of equation (2.8) is maintained
in equation (2.9), so the chiral symmetry group can be divided into two subgroups. We
denote the chiral symmetry group Gχ and divide it into one left handed and one right
handed group:

Gχ = SU(nf )L ⊗ SU(nf )R

with nf being the number of flavours considered. In the two flavour case, the quark doublet
is symmetric under the SU(2)L ⊗ SU(2)R global symmetry, and in the three flavour case,
the symmetry group is SU(3)L ⊗ SU(3)R. The chiral transforms will now be denoted as

gL ∈ SU(nf )L, gR ∈ SU(nf )R

and the quark fields transform as qL → gLqL and qR → gRqR.

2.4 The Linear Sigma Model

As seen in section 2.3 the Dirac Lagrangian is not invariant under chiral transforms when
the particle is massive. It is however possible to construct a theory where the particle
is massless at the beginning and gains a mass due to an interaction leading to a sponta-
neous symmetry breaking similar to the symmetry breaking of the Higgs field described in
section 2.1. One of the theories constructed in this ways is the Linear Sigma Model (LσM).

In the LσM the mass is assumed to rise from a fermion-meson interaction. In the
low-energy spectrum, the interaction term between fermions and a meson can be written
as

Lint = −gψ̄Σψ
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where ψ is the fermion field and Σ is a linear combination of two fields:

Σ = σ11 + iγ5τiπi

The σ is chosen to be a scalar field, and πi are three pseudoscalar fields [16]. For chiral
symmetry we now require that

L′int = −ψ̄U5Σ′U5ψ = −ψ̄Σψ = Lint
or in other words that Σ transforms as Σ′ = U†5ΣU†5. By expanding the chiral transform
as a series and performing a series of algebraic manipulations described in reference [16],
it can be shown that the fields transform as

σ′ = σ cos 2θ − (π · ε̂) sin 2θ

π′i = πi − (π · ε̂)ε̂i + ε̂i (σ sin 2θ + (π · ε̂) cos 2θ)

Here π is the triplet containing the three πi fields, ε̂ is the (normalised) vector containing the
three parameters εi of the chiral transform, equation (2.7) and θ = |ε|/2. The interpretation
of the chiral transform is a rotation in the plane constituted by σ and ε̂, and the components
perpendicular to π are unchanged. The transforms above can be expanded as a series with
respect to ε and keeping only the first order terms yields the infinitesimal transform:

σ′ = σ − πiεi, π′i = πi − σεi
Using this we can construct a kinetic term for the Σ field that is invariant under the
infinitesimal transform:

LKE =
1

2
∂µσ∂

µσ +
1

2
∂µπi∂

µπi

Using the relation

1/2tr(ΣΣ†) =
1

2
tr
(
(σ + iγ5τiπi)(σ − iγ5τiπi)

)
= σ2 + π2 = |Σ|2

we can rewrite the kinetic term as

LKE =
1

4
tr
(
∂µΣ∂µΣ†

)
We can now write the complete Lagrangian of the LσM of the two-flavour SU(2)L⊗SU(2)R
Technicolor model with an elementary Higgs boson [1]:

LLσM =
1

2
ψ̄iγµ∂µψ − ψ̄Σψ +

1

2
tr(∂µΣ∂µΣ†)− Lself + Lsource (2.10)

with the self interaction term
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Lself =
1

2
µ2|Σ|2 − 1

4
λSP |Σ|4 + µHH2 − λHH4 + λH2|Σ|2

=
1

2
µ2(σ2 + π2)− 1

4
λSP (σ2 + π2)2 + µHH2 − λHH4 + λH2(σ2 + π2)

where a Higgs field H has been added and

Lsource = −gs
〈
ψ̄ψ
〉

We have now added the self-interaction terms of the Σ field, the two last terms above,
which looks exactly like the potential part of the Higgs field Lagrangian in equation (2.1).
We have also added the source term −gs

〈
ψ̄ψ
〉
. The meaning of the new field s will be

explained later. We may break the chiral symmetry of the LσM Lagrangian in a way
similar to the steps of equation (2.3) to (2.4). The σ field then gains a vev. Just as we had
to choose a field to expand around in equation (2.2) a choice must be made here as well.
The choice is made so that the π fields are zero. We now define a new field s so that

σ = s+ u

In the vacuum the s field disappears and σ = u. In section 2.1 it is shown that the Higgs
field can be written as

H =
1√
2

(
0

v +H

)
where H is some expansion around the Higgs vev. To see that the vacuum is indeed the
minimum of the self interaction Lagrangian it has to fulfill the vacuum stability conditions:〈

δLself
δσ

〉
=

〈
δLself
δH

〉
= 0

The calculations are carried out, using 〈σ〉 = u, 〈π〉 = 0 and 〈H〉 = 1/
√

2
(

0 v
)T

.

〈
δLself
δσ

〉
= µ2 〈σ〉 − λSP 〈σ〉

(
〈σ〉2 + 〈π〉2

)
+ 2λ 〈H〉2 〈σ〉 − g

〈
ψ̄ψ
〉

= u

(
µ2 − λSPu2 + λv2 − g

〈
ψ̄ψ
〉

u

)
= 0〈

δLself
δH

〉
= 2µH 〈H〉 − 4λH 〈H〉3 + 2λ 〈H〉

(
〈σ〉2 + 〈π〉2

)
=
√

2v
(
µH − λHv2 + λu2

)
= 0

17



Here we identify m2
π = −g 〈ψ̄ψ〉

u
= µ2 − λSPu2 + λv2. This is motivated later. As neither u

or v are zero, the condition for vacuum stability is that{
µ2 − λSPu2 + λv2 −m2

π = 0
µH − λHv2 + λu2 = 0

Here it can be shown that 〈π〉 has to be zero; assigning a vev different from zero to the
pions would violate the vacuum stability conditions. From the equation system above we
get expressions for the vevs:

u2 =
λH(µ2 +m2

π) + λµ2
H

λSPλH − λ2

v2 =
λ(µ2 +m2

π) + λSPµ
2
H

λSPλH − λ2

In the self interaction Lagrangian we may extract the coefficients in front of the terms σ2,
H2 and σH. Writing the fields as their vevs plus an expansion, we get a quadratic form
looking as

1

2

(
−m2

π − 2λSP s
2 + 4λuvHs− 2λHv

2H2
)

= −1

2

(
s H

)( m2
11 m2

12

m2
21 m2

22

)(
s
H

)
where (

m2
11 m2

12

m2
21 m2

22

)
=

(
m2
π + 2λSPu

2 −2λuv
−2λuv 2λHv

2

)
As the matrix above is symmetric, the spectral theorem states that it can be diagonalised.
The eigenvalues are found by solving the characteristic equation:∣∣∣∣ m2

11 − λ m2
12

m2
12 m2

22 − λ

∣∣∣∣ = λ2 − (m2
11 +m2

22)λ+ (m2
11m

2
22 −m4

12) = 0

The solutions to this equation is

M2
H =

1

2
m2
π + λSPu

2 + λHv
2 −

√
(
1

2
m2
π + λSP + λHv2)2 − 2λHm2

πv
2 − 4(λSPλH − λ2)u2v2

M2
σ =

1

2
m2
π + λSPu

2 + λHv
2 +

√
(
1

2
m2
π + λSP + λHv2)2 − 2λHm2

πv
2 − 4(λSPλH − λ2)u2v2

which mean that we now have found the masses of the physical Higgs and sigma particles in
terms of the constants of the Lagrangian in (2.10). The squared masses above are positive
definite, which they have to be if the vacuum is stable.
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3 Method

The work in this thesis has been divided into several stages, each stage beeing a step
in the process of going from a purely theoretical foundation to the results consisting of
observables which can be meassured in an particle accelerator. The first stage has been
to review the mathematical and conceptual basis on which the Standard Model and its
extensions is constructed, including group theory, the concept of covariant derivatives, the
Dirac equation and the chiral transform. This has also included a short review of the
Standard Model itself and its different sectors.

The second stage has been to construct the chirally symmetric technicolor model. This
was done by reproducing the results from unpublished notes by Roman Pasechnik [17].
Starting from the LσM Lagrangian (2.10), an effective model was built on interactions
between the techniquarks and scalar technimesons. From here, the basis of the Lagrangian
was changed from gauge to mass basis. The diagonalisation of the mass matrix was done
using the computational software Mathematica [18].

The third stage involved a Mathematica package called FeynRules [19], which was used
to derive all interaction vertices of the physical Lagrangian. The output file of this package
was processed by three other packages: FeynArts [20], FormCalc [21] and LoopTools [22].
FeynArts generated the Feynman diagrams and amplitudes of the model, FormCalc calcu-
lated the tree-level and one-loop diagrams and LoopTools evaluated the one-loop integrals.
A description of how these packages work is given in appendix C.

The first model file for FeynRules was made using the results aquired from the diagonal-
isation. There was problem here however. For some reason the chosen linear combination
triggered a bug somewhere. Much time was spent on trying to get this model to work, and
then later to identify the bug. Whether the bug was in the model file or in the FeynRules
package was not decided. When the discovery was made where the bug was triggered, the
choice of parameters was changed to another equivalent set suggested by Roman Pasech-
nik. The latter choice has enabled us to perform numerical analysis of the Higgs boson
observables in the H → γγ channel at the LHC.
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4 Three techniquarks

In this section the fundamental properties of the three flavour SU(3L)⊗SU(3)R Technicolor
model is laid out and from this the physical states are derived. First the transformation
properties of the techniquarks is gone through and it is shown that they indeed are chirally
symmetric. Then the Lagrangian of the model is constructed from the LσM gone through
above. The chiral symmetry is broken, and then the electroweak symmetry, which gives
rise to mixings of the fields. Finally the basis is changed into mass basis and the gauge
fields are expressed in terms of the physical fields.

4.1 Transformation properties

The three flavour techniquark model contains three techniquarks divided into two families.
The left handed techniquarks are arranged in a bi-doublet Qaα

L(A). The index a = 1, 2 is the

index of the fundamental SU(2)W representation and α = 1, 2 is the index of SU(2)TC .
A = 1, 2 represent the generation of T-quarks considered. The right handed T-quarks are
singlets in the SU(2)W representation but doublets under SU(2)TC .

The infinitesimal group transform of the bi-doublets are

Qaα′
L(A) = Qaα

L(A) +
i

2
gW θkτ

ab
k Q

bα
L(A) +

i

2
gTCφkτ

αβ
k Qaβ

L(a) (4.1)

where the second term represents a transform in the electroweak space and the third in
techniflavour space. θk and φk are the transform parameters of each transform and gW and
gTC are some constants. The right hand techniquarks transform as

Uα′
R(A) = Uα

R(A) −
i

2
g1θU

α
R(A) +

i

2
gTCφkτ

αβ
k Uβ

R(A) (4.2)

Dα′
R(A) = Dα

R(A) +
i

2
g1θD

α
R(A) +

i

2
gTCφkτ

αβ
k Dβ

R(A)

where the terms containing θ are transforms in U(1)Y space. These transform terms have
opposite sign since the hypercharge of Ua

R(A) andDa
R(A) is of equal magnitude but of opposite

sign. The charge conjugated bi-doublets will be denoted ĈQaα
L(A) = QCaα

L(A) and the SU(2)W

singlets ĈQα
L(A) = QCα

L(A). Charge conjugating a Weyl spinor changes the chirality of the
fields, so turning to the second generation fields we get the relation

Qbβ
R(2) = εabεαβQCaα

L(2)

where the Levi-Civita symbol is denoted as

εab =

(
0 1
−1 0

)
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Note now how the right handed fields of the second generation is in bi-fundamental rep-
resentation. Performing the charge conjugation on the transform (4.1) and then inserting
the above relation yields:

QCaα′
L(2) = QCbβ

L(2) −
i

2
gW θk(τ

ab
k )∗QCbα

L(2) −
i

2
gTCφk(τ

αβ
k )∗QCaβ

L(2)

εabεαβQCbβ′
L(2) = εabεαβQCbβ

L(2) −
i

2
gW θkε

ab(τ bck )∗εαβQCcb
L(2) −

i

2
gTCφkε

αβ(τβγk )∗εabQbγ
L(2)

Using the relations εacεbc = δab, δ being the Kronecker delta, the antisymmetric property
of the Levi-Civita symbol and the commutation relations of equation (A.2), the above
equations will yield

Qaα′
R(2) = Qaα

R(2) +
i

2
gW θkτ

ab
k Q

bα
R(2) +

i

2
gTCφkτ

αβ
k Qaβ

R(2)

Thus the right handed bi-doublet of the second generation transform in the same way
as the left handed bi-doublet of the first generation. In the same way the right handed
SU(2)EW singlet Uα

R(A) of equation (4.2) can be charge conjugated:

UCα′
R(A) = UCα

R(A) +
i

2
g1θU

Cα
R(A) −

i

2
gTCφk(τ

ab
k )∗UCα

R(A)

−εabUCb′
R(A) = −εabUCb

R(A) +
i

2
g1θ(−εab)UCb

R(A) +
i

2
gTCφkε

ab(τ bck )∗εcf (−εfdUCd
R(A)) (4.3)

Just as above the charge conjugation changes the chirality so we introduce the field

SaL = −εabUCb
R(A)

which inserted in equation (4.3) yields the transformation property of this new right handed
field

Sa′L = SaL +
i

2
g1θS

a
L +

i

2
gTCφkτ

ab
k S

b
L

We now have two chirally symmetric generations, the first being a doublet and the second
a singlet under SU(2)W :

Qaα = Qaα
L(1) +Qaα

R(2) = QCaα
L(1) + εabεαβQbβ

L(1)

Sa = SaL + SaR = −εabUCb
R +Da

R

where Q and S are Dirac fields with respect to weak interactions. Therefore the interaction
between techniquarks and electroweak bosons is vectorlike and vectorlike weak interactions
protect the considered technicolor model from large techniquark contributions to the Pe-
skin parameters. Models in which the interactions are non-vectorlike has been ruled out by
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the precision tests. Another important feature of the Dirac techniquarks is that the fun-
damental techniquark Lagrangian has an arbritrary mass term consistent with the chiral
symmetry. This is the main difference from ordinary QCD where the left-right symmetry
is broken by weak interactions.

4.2 The new Lagrangian

Introducing a The Lagrangian of the three flavour LσM can now be written as

L =iQ̄γµ∂µQ+ iS̄γµ∂µS + ∂µΣ†∂µΣ

−
√

6κ(Q̄LΣQR + Q̄RΣ†QL) + µ2Σ†Σ− λ1(Σ†Σ)2 (4.4)

− 3λ2(Σ†Σ)2 + Λ3Re (det (Σ))

where the first row contains the kinetic terms and the second and third row contains the
potential terms. This Lagrangian is a straight forward extension of the SU(2) LσM, which
has been used to describe the lightest mesons in QCD [23]. Here Σ = λa

2
σa − iλa

2
πa,

analogous to the two flavour case with

λa
2
σa =

1√
2


1√
2
a0 + 1√

6
f + 1√

3
σ a+ H+

a− − 1√
2
a0 + 1√

6
f + 1√

3
σ H0

H− H̄0 −
√

2
3
f + 1√

3
σ



λa
2
πa =

1√
2


1√
2
π0 + 1√

6
η + 1√

6
η′ π+ K+

π− − 1√
2
π0 + 1√

6
η + 1√

3
η′ K0

K− K̄0 −
√

2
3
η + 1√

3
η′


These fields are all technimesons. These are considered to behave as fundamental particles
at low energies, as we consider an effective field theory in which these mesons are described
in terms of interactions with Standard Model particles — quarks, leptons, bosons — as
well as in terms of self-interactions. The σa matrix contains scalar mesons and the πa
field contains pseudoscalar mesons, and they are classified as follows: the πi and ai triplets
have no hypercharge and are in adjoint representation under SU(2)W , the doublets K =
(K+, K0) and H = (H+, H0) have hypercharge 1/2 and are in fundamental representation,
and the SU(2)W singlets σ, η, η′ and f have neither hypercharge nor isospin [23, 24].

4.3 Breaking the chiral symmetry

In vacuum, the σ field gains a vev, 〈σ〉 = u while the other fields get no vev. Going back
to the potential part of equation (4.4), setting the σ field to u and the rest to zero in Σ,
will yield
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〈U〉 = −µ
2

2
u2 +

1

4
(λ1 + λ2)u4 − 1

3
Λ3u

3 + κu
〈
Q̄Q
〉

The vacuum stability conditions are

〈
δU

δu

〉
= u

(
−µ2 + (λ1 + λ2)u2 − Λ3u+

κ

u

〈
Q̄Q
〉)

= 0〈
δ2U

δu2

〉
= −µ2 + 3(λ1 + λ2)u2 − 2Λ3u

= 2(λ1 + λ2)u2 − Λ3u−
κ

u

〈
Q̄Q
〉
> 0

The potential part of the Lagrangian can be explicitly expanded and from this mass terms
for the fields contained in Σ can be identified. These are

M2
π(0) = M2

K(0) = M2
η(0) = −κ

u

〈
Q̄Q
〉

= −µ2 + (λ1 + λ2)u2 − Λ3u

M2
a(0) = M2

H(0) = M2
f(0) = 2λ2u

2 + 2Λ3u+M2
π(0)

M2
σ(0) = 2(λ1 + λ2)u2 − Λ3u+M2

π(0)

M2
η′(0) = 3Λ3u+M2

π(0)

It is here apparent that the π, K and η particles are pseudo-Goldstone bosons, as they
have gained a small mass only through the vacuum condensate. The vacuum stability
conditions set constraints on the possible choices of parameter values; the masses must be
positive definite. This system of equations may be solved so that the constants λ1u

2, λ2u
2

and Λ3u are expressed as linear combinations of the different masses. Doing so yields

λ1u
2 =

1

2

(
M2

η′(0) +M2
σ(0) −M2

a(0) −M2
π(0)

)
(4.5)

λ2u
2 =

1

6

(
3M2

a(0) − 2M2
η′(0) −M2

π(0)

)
Λ3u =

1

3

(
M2

η′(0) −M2
π(0)

)
(4.6)

The full Lagrangian of this theory can now be expressed as

L = LSM + LTC
with LTC being these new terms of the techniquark model and LSM is the Lagrangian of
equation (B.8) except for the Higgs term LHiggs which is replaced by this new techniquark
sector. The meson fields have different isospin and hypercharge and so the Lagrangian is
rewritten with the proper covariant derivatives:
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Lσ = iQ̄γµ
(
∂µ −

i

2
gWW

a
µ τa

)
Q+ iS̄γµ

(
∂µ +

i

2
g1Bµ

)
S

−
√

6κ
(
Q̄LΣQR + Q̄RΣ†QL

)
+

1

2
(DµπaDµπa +DµaaDµaa)

+ (DµK)†DµK + (DµH)†DµH

+
1

2
(∂µη∂

µη + ∂µη
′∂µη′ + ∂µf∂

µf + ∂µσ∂
µσ)

+ µ2Σ†Σ− λ1(Σ†Σ)2 − 3λ2(Σ†Σ)2 + Λ3Re (det (Σ))

and the different derivatives are

Dµπa = ∂µπa + gW εabcW
b
µπc

Dµaa = ∂µaa + gW εabcW
b
µac

DµK = ∂µK −
i

2
g1BµK −

i

2
gWW

a
µ τaK

DµH = ∂µH−
i

2
g1BµH−

i

2
gWW

a
µ τaH

Note that the Q that interacts with the weak gauge field is a Dirac spinor and not a
Weyl spinor. This chirally symmetric interaction is necessary in order for the model to be
consistent with the electroweak precision tests [1].

4.4 The electroweak symmetry breaking

In order to go to the physical fields the electroweak symmetry must be broken just as the
chiral. The techniquark condensates of the unbroken electroweak phase

〈
Q̄Q
〉

will still be
present, but there will be a new condensate added, the non-diagonal

〈
D̄S + S̄D

〉
state.

After the symmetry breaking σ keeps the vev 〈σ〉 = u and the lower component of the
Higgs field gets the vev H0 = v/

√
2. Inserting this in the potential part of the Lagrangian

yields

〈U〉 =− µ2

2

(
u2 + v2

)
+

1

4
(λ1 + λ2)

(
u2 + v2

)2
+ λ2v

2

(
u2 +

1

8
v2

)
− Λ3

(
1

3
u2 − 1

2
v2

)
u+ κu

〈
Q̄Q
〉

+

√
3

2
κv
〈
D̄S + S̄D

〉
Again the vacuum stability condition is that the potential above is in its minimum when
σ = u and H0 = v/

√
2:
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〈
δU

δσ

〉
= 0

= u

(
−µ2 + (λ1 + λ2)

(
u2 + v2

)
+ 2λ2v

2 − Λ3

(
u− v2

2u

)
+
κ

u

〈
Q̄Q
〉)

〈
δU

δH0

〉
= 0

= v

(
−µ2 + (λ1 + λ2)

(
u2 + v2

)
+ λ2

(
2u2 +

1

2
v2

)
+ Λ3u+

√
3

2

κ

v

〈
D̄S + S̄D

〉)

To make sure that the extremum is a minimum the second derivatives must fulfill the
condition 〈

δ2U

δσ2

〉〈
δ2U

(δH0)2

〉
−
〈

δ2U

δσδH0

〉2

> 0

where the second derivatives are

〈
δ2U

δσ2

〉
=
(
−µ2 + (λ1 + λ2)(3u2 + v2) + 2λ2v

2 − 2Λ3u
)

〈
δ2U

(δH0)2

〉
=

(
−µ2 + (λ1 + λ2)(u2 + 3v2) + λ2

(
2u2 +

3

2
v2

)
+ Λ3u

)
〈

δ2U

δσδH0

〉
= (2(λ1 + 2λ2)uv + Λ3v)

These conditions sets constraints on the vevs. In order to keep the vacuum stable and to
keep the masses positive definite, the Higgs vev must be much smaller than the sigma vev.
Therefore it will be assumed that v � u. After the electroweak symmetry breaking the
different fields mix and the mass terms can be extracted in the gauge basis. The fields can
be divided into four groups of fields: neutral scalar, neutral pseudoscalar, charged scalar
and charged pseudoscalar fields. The mass terms of the neutral scalar fields are

M2
H(0)

(
(a0)2 + (H0)2 + f 2

)
+M2

σ(0)σ
2 +

(
(λ1 + 3λ2)uv +

Λ3

2
v

)
H0σ

+
1

2
√

2
(Λ3v − 3λ2uv)

(
H0f −

√
3H0a0

)
− 3

2
√

2
λ2v

2
(
σf +

√
3σa0

)
and those of the charged scalar fields are

M2
H(0)

(
H+H− + a+ + a−

)
+

√
3

2
(3λ2uv − Λ3v)

(
H+a− +H−a+

)
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while the mass terms of the neutral pseudoscalar fields are

M2
π(0)

(
(π0)2 + η2 +K0K̄0

)
+M2

η′(0)η
′2 − λ2v

2

(√
3

4
π0η +

√
3

2
√

2
π0η′ +

1

2
√

2
ηη′

)
− 1

2
(λ2uv + Λ3v)

(
η
(
K0 + K̄0

)
+
√

3π0
(
K0 + K̄0

))
+

(√
2λ2uv −

1√
2

Λ3v

)
η′
(
K0 + K̄0

)
(4.7)

and the terms of the charged pseudoscalar fields are

M2
π(0)

(
π+π− +K+K−

)
+

√
3

2
(λ2uv + Λ3v)

(
π+K− + π−K+

)
These terms can all be expressed using symmetric matrices. By diagonalising them, the
physical mass spectrum will be found just as in the two techniquark case. Here the notation
δ = v/u is introduced. The mixing matrices will be somewhat complicated and hard to
diagonalise, but since v � u, δ will be small and therefore we will expand the mass terms
as a series in δ and neglect quadratic and higher terms.

4.5 Transforming into the mass basis

In the case of the neutral scalar fields and the neutral pseudoscalar fields, the mass terms
expressed in gauge basis consists of a four-by-four matrix with diagonal terms and cross
terms. In both the matrix (4.8) and (4.9) each diagonal term contains a constant and
an extra term dependent on δ. When δ → 0, corresponding to no electroweak symmetry
breaking, the matrices turn diagonal, and three of the fields get the same mass, while the
fourth get another mass. If we extract these three fields we might write it as

(
φ1 φ2 φ3

) M2 0 0
0 M2 0
0 0 M2

 φ1

φ2

φ3

 = M2
(
φ2

1 + φ2
2 + φ2

3

)
where φi represent the three real fields with the same mass term and M2 is this mass term.
The left hand side above is however not a unique way of writing the right hand side in
matrix form. The group of rotations in three-dimensional real space is the SO(3) group.
A rotation in three dimensions can in general be expressed in terms of three angles, call
them ψ, θ, and ξ, combined into a rotation matrix [25]. The convention is chosen in which
the rotation matrix looks like

 cosψ cos ξ − cos θ sin ξ sinψ cosψ sin ξ + cos θ cos ξ sinψ sinψ sin θ
− sinψ cos ξ − cos θ sin ξ cosψ − sinψ sin ξ + cos θ cos ξ cosψ cosψ sin θ

sin θ sin ξ − sin θ cos ξ cos θ


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Call this rotation matrix R and set z =
(
φ1 φ2 φ3

)
. Now consider a change of basis

by rotating the vectors, z → z′ = Rz. Write the mass matrix as M211, a scalar times the
unit matrix. Then

z′TM211z′ = zTRTM211Rz = zTRTRM211z = zTM211z

where it is noted that all three dimensional rotational matrices are orthogonal, which means
that RTR = 11 [26]. Thus we have an SO(3) symmetry in the mass spectrum which is
softly broken by the Higgs vev, allowing physical fields to mix even before the symmetry
breaking, and we can freely choose how the gauge fields are expressed in terms of these
three new parameters. When the symmetry breaks though, the choice of angles will affect
the resulting physics.

4.5.1 The neutral scalars

The mass matrix for the neutral scalar multiplet
(
a0 h f σ

)T
is

M2
H(0)

1
2
√

6
κ1δ 0 0

1
2
√

6
κ1δ M2

H(0)
1

6
√

2
κ1δ

1
3
κ2δ

0 1
6
√

2
κ1δ M2

H(0) 0

0 1
3
κ2δ 0 M2

σ(0)

 (4.8)

where the constants are

κ1 = 8M2
η′(0) − 9M2

H(0) +M2
π(0)

κ2 = −2M2
η′(0) + 6M2

H(0) − 7M2
π(0) + 3M2

σ(0)

κ3 = M2
H(0) −M2

σ(0)

The eigenvalues of the mass matrix are

M2
h = M2

H(0) +O(δ2) M2
σ = M2

σ(0) +O(δ2)

M2
f = M2

H(0) + 1
3
√

2
κ2δ +O(δ2) M2

a0
= M2

H(0) −
1

3
√

2
κ2δ +O(δ2)

Following the reasoning above, the most general way of expressing the gauge fields in terms
of physical fields, before symmetry breaking and noting the physical fields in Fraktur, would
be

σ = s

h = (cosψ cos ξ − cos θ sin ξ sinψ) h + (cosψ sin ξ + cos θ cos ξ sinψ) f + (sinψ sin θ) a

f = (− sinψ cos ξ − cos θ sin ξ cosψ) h + (− sinψ sin ξ + cos θ cos ξ cosψ) f + (cosψ sin θ) a

a0 = sin θ sin ξh− sin θ cos ξf + cos θa

One solution that was found, corresponding to the parameters
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ψ = 140.768◦

ξ = 63.435◦

θ = 131.694◦

is

σ = s +
1

3

κ1δ

κ3

h

h =
1

2
a−
√

3

2
f

a0 =

(
1√
2
− κ2

1

12κ2κ3

δ

)
h−

(
1

2
√

2
+

κ2
1

24κ2κ3

δ

)(
f +
√

3a
)
− 1

3
√

2

κ1δ

κ3

s

f = −
(

1√
2

+
κ2

1

12κ2κ3

δ

)
h−

(
1

2
√

2
− κ2

1

24κ2κ3

δ

)(
f +
√

3a
)

+
1

3
√

2

κ1

κ3

δs

In this configuration h does not mix with s. If δ tends to zero, the fields become

σ = s

h =
1

2
a−
√

3

2
f

a0 =
1√
2
h− 1

2
√

2
f−
√

3

2
√

2
a

f = − 1√
2
h− 1

2
√

2
f−
√

3

2
√

2
a

Another possible way of choosing these fields is by the parametrisation

ψ = −63.435◦

ξ = 39.2315◦

θ = −127.761◦

which yields the result
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σ = s− $δ

3
√

2M2
σ(0)

(a + f)

h =
a + f√

2
+

2$δ

3M2
σ(0)

s

f =

√
3

2
h− 1

2
√

2
(a− f)

a = −1

2
h− 1

2

√
3

2
(a− f)

in which the constant $ = M2
η′(0) −M2

π(0) + 6M2
H(0) is introduced. Remember though that

this solution has been found with µ2 = 0. With these parameters, the a and f is maximally
mixed, with a 45◦ mixing angle, in the h field.

4.5.2 The charged scalars

The terms of the charged scalars can be written as

(
H+ a+

) M2
H(0)

√
3
2

(3λ2uv − Λ3v)√
3
2

(3λ2uv − Λ3v) M2
H(0)

( H−

a−

)
Diagonalising this matrix, and changing the basis of the doublets accordingly, two new
fields is identified as

H̃± =
1

2

(
−H± + a±

)
ã± =

1

2

(
H± + a±

)
and the masses of these fields are

M2
H± = M2

π(0) +
1

2
√

6

(
3M2

H(0) +M2
π(0) − 4M2

η′(0)

)
δ +O(δ2)

M2
a± = M2

π(0) −
1

2
√

6

(
3M2

H(0) +M2
π(0) − 4M2

η′(0)

)
δ +O(δ2)

4.5.3 The neutral pseudoscalars

Among the terms of the neutral pseudoscalars, the term K0 + K̄0 is present several times.
The new fields
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ζ =
1√
2

(
K0 + K̄0

)
ξ =

i√
2

(
K0 − K̄0

)
are therefore introduced, so that K0K̄0 = ζ2 + ξ2. When inserting this into the expres-
sion (4.7), one will see that the field ξ does not mix with the other fields but only have the

mass M2
π(0). Constructing the multiplet

(
η′ ζ η π0

)T
the mass matrix can be written

as 
M2

η′(0) χ1δ 0 0

χ1δ M2
π(0)

1
2
√

2
χ2δ

1
2

√
3
2
χ2δ

0 1
2
√

2
χ2δ M2

π(0) 0

0 1
2

√
3
2
χ2δ 0 M2

π(0)

 (4.9)

where the constants have been rewritten in terms of equation (4.5) - (4.6) and

χ1 = M2
H(0) −M2

η′(0)

χ2 = M2
π(0) −M2

H(0)

χ3 = M2
η′(0) −M2

π(0)

The eigenvalues of this matrix are

M2
π0

= M2
π(0) +O(δ2) M2

η′ = M2
η′(0) +O(δ2)

Mζ = M2
π(0) + 1√

2
χ2δ +O(δ2) M2

η = M2
π(0) −

1√
2
χ2δ +O(δ2)

The most general way of writing linear combinations of these fields would be

η′ = e

π0 = (cosψ cos ξ − cos θ sin ξ sinψ) p + (cosψ sin ξ + cos θ cos ξ sinψ) y + (sinψ sin θ) z

η = (− sinψ cos ξ − cos θ sin ξ cosψ) p + (− sinψ sin ξ + cos θ cos ξ cosψ) y + (cosψ sin θ) z

ζ = sin θ sin ξp− sin θ cos ξy + cos θz

One possible set of parameters would be

ψ = 90.000◦

ξ = 120.000◦

θ = 45.000◦
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which yields the solution

η′ = e +
χ1δ

χ3

z

π0 =
1

2
p−
√

3

2
y

η =

(
1

2
√

2
− χ2

1

χ2χ3

δ

)(
y +
√

3p
)
−
(

1√
2

+
χ2

1

4χ2χ3

δ

)
z +

1√
2

χ1δ

χ3

e

ζ =

(
1

2
√

2
+

χ2
1

χ2χ3

δ

)(
y +
√

3p
)

+

(
1√
2
− χ2

1

4χ2χ3

δ

)
z− 1√

2

χ1δ

χ3

e

and just as in the case of the scalar fields, there is one field here, η′, which does not mix
with the others when δ → 0. Here π0 is only composed by two fields. The relations before
symmetry breaking looks like

η′ = e

π0 =
1

2
p−
√

3

2
y

η =
1

2
√

2

(
y +
√

3p
)
− 1√

2
z

ζ =
1

2
√

2

(
y +
√

3p
)

+
1√
2
z

As above these fields can be combined in another way. By again choosing the maximum
mixing parameters

ψ = −63.435◦

ξ = 39.232◦

θ = −127.7610◦

one solution where the y and p fields are maximally mixed, with 45◦, is

η′ = e +
χ1δ√

2M2
η′(0)

(y + p)

ζ =
y + p√

2
− δ

M2
π(0)

(
2χ1e +

χ2

2
√

2
z

)
η = −1

2
z− 1

2

√
3

2
(y− p)

π0 =

√
3

2
z− 1

2
√

2
(y− p)

Also here, these results has been calculated assuming µ2 = 0.
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4.5.4 The charged pseudoscalars

The mass terms of the charged scalar fields can be written in matrix form as

(
π+ K+

) M2
π(0)

√
3
8

(λ2uv + Λ3v)√
3
8

(λ2uv + Λ3v) M2
π(0)

( π−

K−

)
The mass matrix can be transformed into the base where it is diagonalised. Applying the
same transform of the field doublets the physical states can be constructed:

π̃± =
1

2

(
−π± +K±

)
K̃± =

1

2

(
π± +K±

)
and the masses are

M2
π̃ = M2

π(0) −
√

3

8

(
M2

H(0) −M2
π(0)

)
δ +O(δ2)

M2
K̃

= M2
π(0) +

√
3

8

(
M2

H(0) −M2
π(0)

)
δ +O(δ2)

4.6 Technimeson production cross sections at the LHC

Using the results above, the cross sections for different choices of parameters were calculated
and plotted. There are eleven free parameters in the model. The mixing angles of the
neutral scalar fields are: ψ = −63.435◦, ξ = 39.2315◦ and θ = −127.761◦. The mixing
angles of the neutral pseudoscalar fields are chosen to be the same as for the scalar fields.
The Higgs mass M2

H(0) is set to be 126 GeV, as has been measured at the LHC. The

mass of the pion M2
π(0) is set to be 114 GeV which is the smallest value consistent with

measurements made at LEP II; if it was lighter, it would have been already discovered.
The M2

η′(0) is set to be 135 GeV and the M2
σ(0) is 202 GeV. The δ variable has been changed

between the different calculations, but, as has been shown by R. Pasechnik, electroweak
precision tests forces the δ to be less than 0.08.

In figure 7a the cross section of the gg → γγ process is shown evaluated at a beam
energy of 7 TeV, which corresponds to the energy available at LHC during their first run.
In figure 7b the same process is shown, but at 14 TeV, which corresponds to the energy
scale the new measurements will be at during the second run, starting the spring of 2015.
In these two calculations δ = 0.05, which corresponds to u = 4.92 TeV. The cross section
has been smeared out so that the diagrams are shown with the resolution of the LHC
detectors. The plots suffer from some numerical deviations at approxemately 110 GeV,
which might be caused by the integrator used in the software or the rather big step sizes
of the invariant mass.
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Figure 7: The cross section as a function of the gluon center-of-momentum energy with
δ = 0.05. The continous line represents the cross section of the technimeson resonances,
while the dashed line is the combined cross section of the signal and the background.

In figure 8, the cross section of the H → γγ process is displayed at parton level, with
the combined signal and background shown as a dashed line. This plot shows the fine
structure of the signal, with the pseudo-Goldstone bosons split into three peaks, and the
peak at 126 GeV split into two.

In figures 9 the same process as in 7a is shown, at 7 TeV, but with different values of δ.
In figure 9a δ = 0.1 corresponding to u = 2.46 TeV and in figure 9b δ = 0.01 corresponding
to u = 24.6 TeV. Electroweak precision tests sets the limit δ < 0.08, excluding the cross
section of figure 9a.

This model introduces eighteen technimesons which have been modeled on the corre-
sponding QCD mesons. These are represented in the figures 7 and 8, allthough some of
them have the same mass and are therefore overlapping. The figure 8 shows the cross sec-
tion on parton level, displaying six distinct peaks grouped at three different energy scales.
The leftmost group shows three peaks. These are the pseudo-Goldstone bosons. There
are actually six particles represented here, but some of them overlap. There are two peaks
at about ∼ 125 GeV, corresponding to the Higgs particle and the other scalar particles
whose originates from the Higgs mass. At 135 GeV there is one sharp peak corresponding
to the e particle. The only one of the eighteen mesons not represented in this graph is the
s which is heavier than the others, 202 GeV.

The plots displayed in figures 7 show one bigger peak at∼ 125 GeV which is in the Higgs
boson mass range. It also shows a lower peak at ∼ 113 GeV. Here there are several particles
with approxemately the same mass. These are the pseudo-Goldstones. In the combined
signal-background plot in the 7 TeV case, the second peak does not seem to be obviously
present. In the 14 TeV case there is a faint peak in the combined signal, suggesting that
this process might be more visible if the experiments are carried out at a higher energy
scale. There is also a hint that the big peak starts to split up into two. Compared to
figure 8 it seems as if the split between the somewhat lighter and the somewhat heavier
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Figure 8: The cross section of the pure signal (continous lines) and the signal added with
the background (dashed lines) at parton level.

scalar bosons appear clearer in the detector at higher energies. The very sharp and distinct
peak of the e boson does not appear in neither of the figures 7.

In figure 10 the signal-to-background ratio is shown for the H → γγ process at 7 TeV.
Together with this is the results from measurements done at CMS at 7 and 8 TeV [27].
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Figure 9: The 7 TeV cross section evaluated with different values of δ.
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Figure 10: The signal-to-background ratio of the H → γγ, displayed together with mea-
surements made at CMS, with δ = 0.05. The CMS data is Figure 27 of reference [27]
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5 Conclusions

In this thesis, a chirally symmetric technicolor model containing three techniflavours has
been constructed as an effective low energy field theory and the physical Lagrangian has
been derived and implemented in a few processes. This model predicts a fine structure of
the Higgs signal: the peak measured at 126 GeV should actually be divided into two. This
split is one of the signatures that would verify this model.

Six new parameters have been introduced. The angles ψ, θ and ξ introduced in sec-
tion 4.5, three corresponding to the neutral scalars and three corresponding to the neutral
pseudoscalars, are free parameters whose value must be decided by measurements. These
angles play the same role in the chiral symmetry breaking as the Weinberg angle does in
Standard Model electroweak symmetry breaking (equation (2.6)). In the limit δ → 0 there
is a SO(3) symmetry in the mass spectrum, which is broken by the vevs u and v. The
choice of parameters in this thesis has been arbritrary, but we had to choose a set of pa-
rameters in order to proceed with the phenomenological investigations. There is of course
two sets of angles that correspond to each given configuration of fields, and the parameters
given in section 4.5 is only one of these. The affect this has to the mass spectrum is not
dramatic: it only changes the linear δ terms with prefactors. How it affects higher order
terms in δ has not been investigated.

The model predicts plenty of new composite Higgs-like states in the energy range that
has been investigated. These states have all similar masses and their peaks are very narrow.
In order to separate these peaks, the resolution of the detectors must be increased. It would
be natural to carry on with the work of this thesis by deciding how high the resolution
must be in order to identify the separate peaks. In this model the physical mass spectrum
has only been expressed to the first order in δ, which causes some of the particles to have
the same masses. Redoing the analysis to higher orders might reveal further separation of
the particle masses. The model also suggests that there will be a range of technibaryons,
which would be more massive than the lightest technimesons. The model could be modified
to account for baryons as well. Including baryons would make the Technicolor model
more advanced, as this would include another symmetry group which accounts for baryon
number.
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Appendix A The Mathematical Formulation

A.1 Group theory

A group G is defined as a set of elements gi and a product operation ∗ with the following
properties [26, 28, 29]:

1. Given two elements of the group, the product of the two are an element of the group
as well:

gi, gj ∈ G⇒ gi ∗ gj ∈ G

2. There is an unit or identity element 11 ∈ G such that

∀g ∈ G : 11 ∗ g = g ∗ 11 = g

3. For every element in the group, there is an inverse:

∀g ∈ G;∃g−1 : g ∗ g−1 = g−1 ∗ g = 11

4. The product operator must be associative:

gi, gj, gk ∈ G⇒ (gi ∗ gj) ∗ gk = gi ∗ (gj ∗ gk)

A group may be discrete or continuous. One also distinguish between abelian and non-
abelian groups. A group is said to be abelian if all elements of the group commute under
the product operation:

gi, gj ∈ G⇒ [gi, gj] = 0

If this is not the case, the group is non-abelian.

A.1.1 Representation

Suppose that for a group G there is a set of n× n-matrices {D(g)} so that

∀gi, gj ∈ G;D(gi)D(gj) = D(gigj)

The set of matrices is said to form a representation of G. There exists some element e ∈ G
so that D(e) = 11, and from this we get

D(g−1) = D−1(g)

We can let each element of a set G represent itself so that D(g) = g. This representation is
the fundamental representation of the group. If D(g) is a matrix representation of a group,
we may inverse and transpose the elements and get a representation D̄(g) = (DT (g))−1.
This representation is called the adjoint representation. If the fundamental representation
is a column vector with n rows, the adjoint representation will be a n× n matrix.
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A.1.2 Direct product

Given two separate groups G1 and G2, with the product operators · and ∗ respectively, one
may form elements in pairs as {(g1i, g2j)}. These elements form a new group G3 that is a
direct product of its constituent groups, written as G3 = G1 ⊗G2. The product operation
of G3 is

(g1i, g2k)(g1j, g2l) = (g1i · g1j, g2k ∗ g2l)

A.1.3 Lie groups

Assume a group G whose elements g can be characterised by some parameter a. The
product of two elements are a third so given the parameters a and b there must exist a
third parameter c so that

g(a) ∗ g(b) = g(c)

Since this must be true for all elements of the group, each pair of parameters a and
b correspond to some c and there must be some functional φ establishing the relation
between these:

c = φ(a, b)

For every parameter a there is also a parameter ā so that g(a)∗ g(ā) = 11. If the functional
is differentiable an arbitrary number of times, and if φ is analytic, the group is said to be
a Lie group. Although the elements above have been written as if they were dependent on
only one parameter, they may as well be dependent on any number of them.

It can be shown that every element of a Lie group can be written as

g(a1, a2, ..., an) = exp

(
n∑
j=1

iajTj

)
(A.1)

Here a1, ..., an are the parameters of the element and Tj are the generators of the group.
The generators are Hermitian matrices. The sum

∑n
j ajTj forms a space known as the Lie

algebra of the group.

A.1.4 The groups of the Standard Model

The Standard Model is based on the direct product of three groups: U(1)⊗SU(2)⊗SU(3).
These are all Lie groups and the most important properties of each group is gone through
bellow. All these groups are unitary, meaning that the inverse of each element is its
Hermitian conjugate, or

U †U = UU † = 11
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The U(1) group, with U standing for Unitary, is the group of all complex phase factors, on
the form U = eiε, under multiplication. This is a continuous group and the elements form
the unit circle around the origin in the complex plane; all elements have unit magnitude.
As the elements are scalars and the group product is multiplication, all elements commute
and this is therefore an abelian group.

As the U(1) group is a Lie group, it can be written on the form of equation (A.1). By
inspection it can be seen that the generator of the group is a real number. In the Standard
Model this generator is denoted Y and is called the hypercharge.

The SU(2) and SU(3) are two of the special unitary groups. A SU(N) group is a group
consisting of N ×N -matrices. The group is unitary as explained above and special in the
sense that all matrices in the group have unit determinant.

The number of generators for a SU(N) group is N2 − 1. The three generators of the
SU(2) group are the three Pauli matrices τi whose commutation relations are

[τi, τj] = iεijkτk (A.2)

Here εijk is the Levi-Civita symbol defined as

εijk =


+1 if (i, j, k) is (1, 2, 3), (2, 3, 1) or (3, 1, 2)
−1 if (i, j, k) is (2, 1, 3), (3, 2, 1) or (1, 3, 2)
0 if i = j, j = k or k = i

with indices i, j, k running from 1 to 3. The generators for the SU(3) group are the eight
Gell-Mann matrices λa. They commute as

[λa, λb] = 2ifabcλc

where fabc is a completely antisymmetric structure constant just as εijk but with indices
a, b, c running from 1 to 8.

A.2 Lagrangian density

The Standard Model is formulated in terms of a Lagrangian density L. The idea of the La-
grangian formulation of mechanics is based on the principle of least action. The Lagrangian
density is denoted L and is defined as

L = T − V
where T is the kinetic and V the potential energy of the system. The action of the system
is then

S =

∫
Ld4x

One should distinguish between the Lagrangian density L and the Lagrangian L; the action
is given by the Lagrangian integrated with respect to time only. In the rest of this thesis
though, the term ”Lagrangian” will be used to refer to the Lagrangian density.
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The equations of motion for a system can be derived by using the Lagrangian and the
Euler-Lagrange equation. For a field φi, with four-gradient ∂µφi = ∂

∂xµ
φi, the Euler-Dirac

equation is

∂L
∂φi
− ∂µ

(
∂L

∂ (∂µφi)

)
= 0 (A.3)

If the system consists of several fields, we get one Euler-Lagrange equation for each field.

A.3 The Dirac equation

The theory describing particles must not depend on in which frame observations are made.
Therefore the Lagrangian must be invariant under Lorentz transformations. Suppose we
have a four-vector transforming as xµ → xµ′ = Λµ

νx
ν for some 4 × 4-matrix. A field

φ(x) would then transform as φ(x) → φ(x)′ = φ(Λ−1x). As the product of two Lorentz
transforms is another Lorentz transform, they form a group, the Lorentz group.

If we now construct a n-component multiplet of fields, that is a column vector with n
rows, each row containing a field, and call it Φa will transform as

Φa → Φb = Mab(Λ)Φa(Λ
−1x)

M(Λ) is some n×n-matrix. If we perform a series of transforms, say Λ and Λ′, we want it
to be equivalent to doing all transforms at the same time. Doing this on Φa, we want the
M(Λ)-matrices to satisfy

M(Λ)M(Λ′)Φ = M(ΛΛ′)Φ

This means the M(Λ)-matrices form a representation of the Lorentz group. The generators
of this representation are the γ-matrices, which can be chosen in different ways. One set
of matrices is

γ0 =

(
0 11
11 0

)
, γi =

(
0 −τi
τi 0

)
where i = 1, 2, 3 and τi are the three Pauli matrices:

τ1 =

(
0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)
This choice of matrices is called the Weyl representation or the chiral representation. We
could as well choose complex matrices like

γ0 =

(
0 τ2

τ2 0

)
, γ1 =

(
iτ1 0
0 iτ1

)
, γ2 =

(
0 τ2

−τ2 0

)
, γ3 =

(
iτ3 0
0 iτ3

)
which then would make the Lorentz group represented in Majorana representation. In the
Weyl representation we may construct a four-component field:
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ψ(x) =


ψ1(x)
ψ2(x)
ψ3(x)
ψ4(x)


This is a Dirac spinor, describing a particle with mass m and its corresponding anti-particle.
We now define ψ̄ = ψ†γ0. In this way the product ψ̄ψ is a Lorentz scalar. The Lagrangian
of these fields will be the Dirac Lagrangian:

LDirac = iψ̄γµ∂µψ −mψ̄ψ (A.4)

If we put this function in equation (A.3) with respect to ψ̄, we get

iγµ∂µψ −mψ = 0

which is the Dirac equation, a Lorentz invariant wave equation. Solving equation (A.3)
with respect to ψ yields

−i∂µψ̄γµ −mψ̄ = 0

which is the Hermitian conjugate form of the equation above. If we would have chosen
the Majorana representation when constructing the spinor, it would be a Majorana spinor,
describing a particle whose antiparticle is identical, i.e. a particle of no electric charge. It
is now useful to define a new matrix γ5 = iγ0γ1γ2γ3, which in Dirac representation is

γ5 =

(
−11 0
0 11

)
(A.5)

From this we can form operators PL and PR so that

PL = 1
2
(11− γ5), PR = 1

2
(11 + γ5)

If we write the four-component Dirac spinor in terms of two new spinors, ψL = ( ψ1 ψ2 )T

and ψR = ( ψ3 ψ4 )T the Dirac spinor can be split up into two so called Weyl spinors
with the above operators:

ψ =

(
ψL
ψR

)
so that

ψL = PLψ, ψR = PRψ (A.6)

The L and R stand for left- and right-handed helicity respectively and this distinction
will be important later as it turns out that fermions interact differently depending on its
helicity. Some important relations of the helicity operators are
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P 2
L = PL

PR
L = PR

PL + PR = 1

PLPR = 0

We also have that

ψ̄L = ψ̄PR, ψ̄R = ψ̄PL

From this we can draw the conclusion that

ψ̄ψ = ψ̄
(
P 2
L + P 2

R

)
ψ

= ψ̄RψL + ψ̄LψR (A.7)

This is a useful relation for identifying mass terms of fermions as theyhave the form mψ̄ψ
in the Lagrangian.

A.4 Invariance and the covariant derivative

When constructing a theory, we want it to be invariant under certain symmetry transfor-
mations. The equations of motions of a particle should not be dependent on from which
angle we observe it, or how someone else chooses to fix their phases.

In quantum physics, observables of a wave function Ψ are dependent of the magnitude
|Ψ|2. This means that we should be able to add a phase factor without affecting the
observable. This transform is named a global gauge transform and is an example of a U(1)
transform:

Ψ→ Ψ′ = e−iχΨ

If the observable is dependent on time and position, it is a local gauge transform:

Ψ→ Ψ′ = e−iχ(t,x̄)Ψ

If a function transforms as a wave function, its derivative should as well. The function Ψ
above is gauge invariant, but its derivative ∂µΨ is not:

∂µ
(
e−iχΨ

)
= e−iχ (∂µΨ)− i (∂µχ) e−iχΨ

= e−iχ (∂µ − i∂µχ) Ψ

The solution is to introduce the covariant derivative Dµ = ∂µ− igAµ where gAµ is the field
needed to cancel the ∂µχ term, g being some scaling factor. When doing a transform, we
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have two covariant derivatives Dµ = ∂µ − igAµ and Dµ′ = ∂µ − igAµ′ so that, writing the
phase factor as U :

Dµ′ (UΨ) = U (DµΨ)

Writing the covariant derivatives explicitly, we may solve for Aµ′ and it turns out that it
transforms as [15]

Aµ′ = − i
g

(∂µU)U−1 + UAµU−1

For transformations in SU(2) the factor would be(
ψ′1
ψ′2

)
= eiεi·τi/2

(
ψ1

ψ2

)
which represent a rotation in SU(2) space. εi are three parameters required to specify the
rotation and τi generates the SU(2) group. To construct a covariant derivative we now
need three fields Wi so that

Dµ = ∂µ − ig τi
2
W µ
i

In SU(3) space, generated by λa, the transformation factor would be eεaλa/2 with εa being
the eight parameters needed in this case. There are also eight fields Gµ

a to keep the
derivative covariant.

Appendix B Outlines of the Standard Model

The Standard Model includes a big number of particles sorted into different categories
depending on their properties. The first distinction to make is the one between bosons and
fermions.

The half-integer spin fermions are those who make up matter. The fermions are divided
into leptons, which are the particles that do not interact strongly, and quarks, which are the
particles that do. The leptons are the electron, the muon and the tau lepton, electrically
charged, and the three corresponding uncharged neutrinos.

The integer spin bosons are the force carriers of the Standard Model. Photons are
the particle of electromagnetic interaction, gluons of the strong interaction and the weak
interaction is mediated by the Z and W± bosons. There is also one spin zero particle, the
Higgs particle, that do not mediate any force, but is needed for the mechanism from which
mass arise.

The Lagrangian of the Standard Model can be written as

L = LQCD + LEW + LHiggs + Lyuk. (B.8)

Below, the meaning and consequences of each term will be gone through.
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B.1 Quantum chromodynamics

The theory of Quantum Chromodynamics is based on the group SU(3)C with C standing
for colour. The quarks are divided into six flavours: up, down, charm, strange, top and
bottom, and in fundamental representation of SU(3) these are all triplets. The gauge fields
of SU(3) are in adjoint representation. As no particle but quarks interact strongly all other
particles are colour singlets.

The QCD Lagrangian is

LQCD = −1

4
F̂ a
µνF̂

µν
a + ψ̄i (iγ

µDµ −m)ψi + h.c. (B.9)

where h.c. means that one should also add the hermitian conjugate of each term and

F̂ a
µν = ∂µG

a
ν − ∂νGa

µ + gsf
abcGbµGcν

is the gluon field tensor. Ga
µ are the colour fields and gS is the strong coupling constant.

The covariant derivative of SU(3)C is

Dµ = ∂µ − igs
λa
2
Ga
µ

In SU(3) the quarks are in fundamental representation while the gluons are in adjoint
representation [11, 30, 31].

B.1.1 Quark confinement and asymptotic freedom

The gluons, which are the force carriers of the strong interaction, interact strongly them-
selves. As a result, the force between two quarks increase when the distance between them
increases, as opposed to the electromagnetic force between two charged objects which de-
creases inversely proportional to the square of the distance between the objects. This
means that the quarks are bound together very strongly into hadrons and never appear
as free quarks. In processes where the quarks are forced apart the potential energy of the
field increases until it contains enough energy to create new quarks. If, for example, the
hadron is a quark-antiquark pair, it would be more energetically favourable to create a
new qq̄ pair in between the two original quarks, so that the new antiquark binds to the old
quark and vice versa.

The coupling strength of the QCD lagrangian gs may also be expressed as

αs =
g2
s

4π

This coupling strength — and the coupling strength of the other forces — are not con-
stant, but dependent on the energy scale considered. If the coupling strength depend on
the (Lorenzt invariant) momentum −q2, we may measure the strength at some reference
momentum −q2 = −µ2. If the reference strength is denoted αs(µ

2) it can be shown, via
loop correction calculations, that the strength is given by
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αs(−q2) =
αs(−µ2)

1 + αs(−µ2)
12π

(33− 2Nf ) ln(−q
2

−µ2 )
(B.10)

This is called a running coupling, as the coupling strength depend on the momentum of
the particles. When the momentum increases, the denominator grows and the coupling
strength becomes weaker. This behaviour is known as asymptotic freedom: when the
momentum is high enough the quark-quark bonds become looser. On the other side of
the spectrum there is a pole where the two terms of the denominator cancel. This pole is
named the Landau pole, at −q2 = Λ2

QCD ≈ 200 MeV. The coupling becomes incredibly
strong here (and equation (B.10) is not valid at these energy scales) [14, 11].

B.2 Electroweak theory

The electroweak interactions are based on the group SU(2)L ⊗ U(1)Y . The Lagrangian of
the electroweak interaction is

LEW = −1

4
F a
µνF

µν
a −

1

4
WµνW

µν + iψ̄jγ
µDµψj + h.c.

where F a
µν is the electromagnetic field tensor

F a
µν = ∂µW

a
ν − ∂νW a

µ + gεabcWbµWcν

and Wµν is the weak interaction field tensor

Wµν = ∂µBν − ∂νBµ

The covariant derivative of SU(2)L ⊗ U(1)Y is

Dµ = ∂µ − ig
Y

2
Bµ − ig′

τi
2
W i
µ

There is a distinction of the left- and right-handed leptons. Left-handed leptons are dou-
blets in SU(2)⊗ U(1) while right-handed leptons are singlets. This means that the right-
handed leptons does not interact weakly. We write

LL =

(
νe
eL

)
and eR

for the first family. For the second and third family the e is just exchanged for a µ or τ .
As of now the Standard Model does not include any right-handed neutrino. The quarks
are also sorted into left-handed doublets and right-handed singlets:

QL =

(
uL
dL

)
and uR, dR

As mentioned above, Y is the hypercharge of the particles and τi
2

the isospin. The electric
charge Q of a particle is related to these quantities as
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Q =
Y

2
+ T3

where T3 is the eigenvalue of the matrix τ3
2

corresponding to the particle in question, i.e.
for the singlets T3 = 0, for the upper particle of a doublet T3 = 1/2 and for the lower
particle of a doublet T3 = −1/2. The electric charge of the particles are well known: e, µ
and τ have Q = −1, neutrons have Q = 0, upper members of quark doublets, u, c and t,
have Q = 2/3 and the lower quarks, d, s and b, have Q = −1/3. The charge unit in which
these quantities are expressed is the elementary charge.

B.3 Yukawa terms

The Yukawa terms of the Standard Model Lagrangian looks like

Lyuk. = geL̄φeR + gdφQ̄φdR + guQ̄φcuR + h.c. (B.11)

where

L =

(
ν
eL

)
, Q =

(
uL
dL

)
and L̄ and Q̄ are the hermitian conjugates of the doublets, ge, gu and gd are some coupling
constants and φc will be explained below. If we start with the first term of equation (B.11)
together with its hermitian conjugate and insert the doublet of equation (2.5) the term
will be

ge
(
L̄φeR + φ†ēRL

)
= ge

((
ν̄ ēL

)( 0
v+H√

2

)
eR +

(
0 v+H√

2

)
ēR

(
ν
eL

))
=
gev√

2
(ēLeR + ēReL) +

ge√
2

(ēLeR + ēReL)H

=
gev√

2
ēe+

ge√
2

(ēLeR + ēReL)H

where on the last row, the relation of equation (A.7) is used. The electron has gained the
mass Me = gev√

2
and we have also found the interaction terms of the electrons and the Higgs

field. This procedure can be repeated for the other terms of the Lagrangian, but with the
distinction that for the third term of equation (2.1) the φc is used instead:

φc = −iτ2φ
† =

(
−φ0†

φ−

)
→
(
−v+H√

2

0

)
where the arrow marks the electroweak symmetry breaking. φ had hypercharge Y = 1 and
φc has hypercharge Y = −1. Something corresponding to φc is not used in the lepton case;
the mass of the neutron, if it even exist, does not come from the electroweak symmetry
breaking.
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Appendix C Description of the used software

The calculations has been made using several different programs and packages, which are
all tied to the computational software program Mathematica (version 8.0 [32] and 9.0 [18]).
Here follows a description of these programs and how they work.

C.1 FeynRules

FeynRules 2.0 [19] is a package for Mathematica, made to calculate Feynman rules in four-
dimensional spacetime of a particle physics model. The user writes a model file in which
all components of a quantum field theory model are defined: gauge groups, fermion and
boson fields, field mixings and coupling constants. Finally the Lagrangian of the model
is included. With this information the program expands the Lagrangian and derives the
Feynman rules of the model. When the expansion is done, the program can export the
results so that they can be used in other packages such as FeynArts. FeynRules supports
any Lorentz and gauge invariant Lagrangian and fields with spin 0,1/2,1,3/2 and 2, making
it possible to explore models beyond the Standard Model.

C.2 FeynArts

The results from FeynRules is exported to FeynArts 3.9 [20] which generates the Feynman
diagrams of the model and calculates the amplitudes of the processes. The user starts by
specifying which kind of process to look at: how many particles that should go into the
vertex, how many that should leave it, and on which loop level the calculations should
be made. FeynArts creates and paints all Feynman diagrams that suits the specifications.
When this is done, the user inputs the model file created by FeynRules, and FeynArts
determine all combinations of fields allowed in such a process. The amplitudes of these
processes are then simplified using FormCalc.

C.3 FormCalc and LoopTools

FormCalc 8.3 [21] is the Mathematica package that calculates the Feynman amplitudes
of the verteces determined by FeynArts at tree level and one loop level. It starts by
performing some simplifications of the algebraic expressions recieved from FeynArts, such
as contracting indices and abbrevating constant expressions, and rewrites it into linear
combinations of loop integrals with model parameters and kinematic variables as prefactors.
All this rewriting is purely algebraic and analytical, but it does not perform any numerical
evaluation. The final step of the program is to automaticaly generate Fortran and C source
code for numerical evaluation of the amplitudes. When executing these routines, a fourth
software is called, LoopTools 2.10 [22]. This package evaluates the one loop integrals as
they are provided by FormCalc.

The results from these calculations are text files containing information about the width
of the different particles involved in the processes studied and cross sections of the process
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for different center-of-momenta. There is a possibillity to calculate cross sections both at
a parton level, where only the momentum of each involved particle is considered, but also
to calculate it at hadron level, when it is taken into account that a particle making up a
composite particle only carries a fraction of the total momentum of the composite particle.
When hadron level calculations are done, they are done using a program implementing a
parton density function. The program used for this task is LHAPDF 5.9 [33], using the
PDF data set MSTW 2008 CPdeut NLO (68 % C.L.) [34].
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