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Abstract

This thesis considers the low-energy effective field theory of a new technicolor extension. The
extension preserves the Standard Model Higgs boson and introduces a chirally symmetric tech-
nifermion sector, in the framework of the gauged linear sigma model. In the nearly conformal
limit, the considered extension leads to a common origin of the Higgs- and Technisigma vacuum
expectation values, related to the technifermion condensate. In addition to this, the model stays
within allowed boundaries of electroweak precision tests for the main part of the parameter space.

The results presented in this thesis are a reproduction of the paper ”Chiral-Symmetric Techni-
color with Standard Model Higgs boson”, published 2013 by R. Pasechnik et al. [14]. The thesis
may serve as a guide to the results obtained in the original paper, as well as being an audit of the
decisions and assumptions made there.
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Populärvetenskaplig sammanfattning

Redan p̊a antikens tid uppkom idén om en minsta, odelbar, partikel. Idag har vi kartlagt 17 sty-
cken av dessa elementarpartiklar, och hur de växelverkar med varandra i den s̊a kallade Standard
Modellen. Interaktionerna har kartlagts p̊a partikelacceleratorer s̊asom LHC, och visat sig bero p̊a
hastigheten partiklarna kolliderats med. Det hela kan liknas vid beteendet av vatten. När vatten
kyls ner, g̊ar det fr̊an att vara helt symmetrisk i sin flytande fas, till att som snöflingor enbart
besitta de diskreta symmetrier vi s̊a ofta fascineras av under vinterhalv̊aret. Den ökända Higgs
partikeln ansvarar för en av dessa fasförandringar, i den s̊a kallade Higgs-mekanismen.

Elementarpartiklarnas beteende är väl kartlagt vid l̊aga energier, men mycket tyder p̊a att det
är n̊agot som saknas. Till exempel finns det ingen tillfredställande förklaring till varför vi har just
17 elementarpartiklar, eller vad det är som triggar Higgs-mekanismen. Likt hur Newtons rörelse-
lagar behövde utvidgas med Einsteins generella relativitetsteori, är Standard Modellen i behov av
en djupare förklaring. Det här examensarbetet behandlar en s̊adan kompletterande modell, vilken
erbjuder en möjlig förklaring av hur Higgs-mekanismen triggas ig̊ang. Modellen beter sig även p̊a
ett sätt s̊adant att det inte är oförklarligt varför vi inte märkt av de nya partiklarna p̊a LHC ännu.
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1 Introduction

This thesis investigates the low-energy effective field theory of a possible technicolor-extension to
the Standard Model. In agreement with chiral perturbation theory in QCD, the model considered
is chirally symmetric and retains the Standard Model Higgs.

When constructing an extension to the Standard Model, it is helpful to understand the features of a
field theory itself. The equations of motion of a field theory is obtained from a so-called Lagrangian
density, which format has certain requirements regarding gauge invariance and dimensionality. The
Lagrangian density of the Standard Model is constructed such that it is locally gauge invariant
under three internal symmetry groups, U(1)Y , SU(2)W and SU(3)c. This section provides an
introduction to the concepts of Lagrangian densities, gauge invariance, spontaneous symmetry
breaking, chiral perturbation theory, the suggested extension and electroweak precision tests. A
reader unfamiliar with group theory, is recommended to begin with Appendix A, containing the
basics of Lie groups and Lie algebras.

1.1 The Lagrangian Density and the Equations of Motion

Lagrangians were originally introduced in classical mechanics, as an alternative method of obtaining
the equations of motion for a system. Instead of calculating the resulting force at each moment
of time, one can obtain the equations of motion for a system by simply identifying two scalar
properties: the kinetic energy and the potential energy. The Lagrangian is defined as the kinetic
energy minus the potential energy, L(r, ṙ) ≡ 1

2mr2−V (r), and yields the equations of motion when
inserted into the Euler-Lagrange equation. The Euler-Lagrange equation is in its turn obtained by
requiring that the particle trajectory yields an extremum of the action S [2].

Similar relations apply to the Lagrangian of a field theory, such as the Lagrangian of the Standard
Model. The Lagrangian of a field theory is formally called a Lagrangian density, L, but is referred
to as simply a Lagrangian for the rest of this thesis. The Lagrangian of a re-normalizable theory is
a function of a field and its first-order derivative, where the field is a function of space-time φ(xµ),
xµ = (xo,x). The action S is then given by [3] (note however, that for a quantum field theory, in
opposition to classical mechanics, there is more than one possible path):

S =

∫
d4xL(φ(x), ∂µφ(x)). (1)

In order to keep the action dimensionless, the Lagrangian must have mass dimension 4, as apparent
from equation 1. Scalar fields φ, vector fields Bµ, masses and the coupling constants µ, have
dimension 1, while spinor fields ψ have dimension 3/2 and the coupling constants λ have dimension
0. Hence, a Lagrangian can only be combined in a limited amount of ways. Allowed combinations
are of the sort:

µφ3, µ2φ2, λφ4, λ2φ2, ψ̄γµψBµ, gψ̄ψφ, gψ̄ψiγ5φ etc. (2)

where the the two last terms are the so-called Yukawa terms for a scalar field and a pseudoscalar
field, respectively. Besides describing the interactions between (pseudo)scalar- and spinor fields,
a Yukawa term also gives rise to the mass of fermions, as shown in Appendix C. The fifth term
describes the interaction between fermions and gauge bosons, where the gauge field is introduced
in the covariant derivative of the kinetic term, as shown in section 1.2.

The combinations of equation 2 will be used when constructing the Lagrangian of the new ex-
tension. Besides fulfilling the requirement of mass dimension 4, such terms must be invariant
under the chosen symmetry.

1.2 Gauge Invariance

The Lagrangian of the Standard Model is invariant under a set of transformations U:
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ψi(x)→ Uijψj(x),

where U is a group element in a Lie group U(1)Y , SU(2)W or SU(3)C (where C denote color, W
denote weak interactions and Y denote hypercharge). In the remainder of this thesis, the indices
will be suppressed.

A group element U in one of these Lie groups is given by equation 110 (Appendix A), where
ξi is the parameter and ti are the generators of the group. The generators for SU(2) and SU(3)
must be traceless Hermitian matrices, since a special unitary matrix requires the determinant to
be one: detU = det eH = eTrH = e0 = 1, where H is a traceless Hermitian matrix [4]. There are
three generators of SU(2):

ti =
τi
2
, [ti, tj ] = εijktk (3)

where τi are the three Pauli matrices. Hence, equation 110 tells us that each Lie Algebra element
of SU(2) is a linear combination of three rotation matrices. Similarly, a group element in SU(3) is
generated by:

ta =
λa
2
, [ta, tb] = εabctc (4)

where λa are the eight lambda matrices, also referred to as the Gell-Mann matrices. For U(1), on
the other hand, there is only one generator:

t =
Y

2
, (5)

where Y is the hypercharge.

The transformations are, for historical reasons, referred to as gauge transformations. A gauge
transformation ψ → Uψ is global if the parameter x is simply a number, ψ → e−ixψ, and local
if the parameter if a function of space and time, ψ → e−ix( ~xi,t)ψ. Since the Lagrangian of the
Standard Model contains derivatives, a local gauge transformation, U = e−ix( ~xi,t), will yield an
extra term ψ∂µU :

∂µψ → U∂µψ + ψ∂µU as ψ → Uψ. (6)

The theory can be made locally gauge invariant by introducing a so-called covariant derivative Dµ,
defined such that the extra term is cancelled:

Dµψ → UDµψ, (7)

To fulfill this requirement, the covariant derivative contains a new vector field Na
µ , which transforms

according to:

Dµ = ∂µ − igntaNa
µ , Nµ → N ′µ = − i

gn
(∂µU)U† + UNµU

†, (8)

where Nµ denotes the product of the generator and the vector field, taN
a
µ .

Our requirement of a locally gauge invariant theory has lead to the introduction of gauge fields
(vector fields), where each field has a corresponding gauge boson. The eight generators of SU(3)
correspond to the eight gluon fields of the Standard Model, the three generators of SU(2), corre-
spond to the three gauge fields W a

µ (a = 1, 2, 3), and the one generator of U(1) corresponds to
the gauge field Bµ. As explained in Appendix B, the W 3

µ ≡ W 0
µ - and the Bµ-field mixes to the

familiar gauge bosons Z and γ.
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By using equation 8 and equations 3, 4 and 5, we may construct the complete covariant derivative
of the Standard Model:

Dµ = ∂µ − ig1
Y

2
Bµ − ig2

τi
2
W i
µ − ig3

λa
2
Gaµ. (9)

1.3 Spontaneous Symmetry Breaking

In the Standard Model, the massterm for gauge bosons, 1
2m

2
BBµB

µ, is not invariant under the field
transformation in equation 8. Similarly, the fermionic massterms breaks the gauge invariance since
the right-handed fields transform as singlets under SU(2)W , while the left-handed fields transform
as doublets. To maintain the local gauge invariance of the Lagrangian, all particles must therefore
be considered massless. Masses are instead introduced via the so-called spontaneous symmetry
breaking mechanism, also referred to as the Higgs Mechanism.

In this subsection we will demonstrate the symmetry breaking of a complex scalar field, φ =
(φ1 + iφ2)/

√
2, under a U(1) symmetry. The Higgs field is in reality assigned to an SU(2) doublet,

but the graphical representation of the U(1) scenario is superior for demonstrational purposes,
such as this.

By including all scalar terms with mass dimension 4, that are invariant under the U(1) symmetry,
the Lagrangian becomes:

L = T − V = (∂µφ)†(∂µφ)− µ2φ†φ− λ(φ†φ)2, (10)

where the potential is given by the last two terms:

V (φ) = µ2φ†φ+ λ(φ†φ)2. (11)

If the potential is plotted as a function of φ1 and φ2 for a negative µ2, it will obtain the shape of a
mexican hat, as shown in figure 1. It is clear simply by looking at the plot, that the theory exhibits
a global U(1) symmetry, since a phase shift correspond to rotations about the z-axis. By choosing a
minimum value, somewhere along the degenerate circular minima, the global symmetry is broken.
Excitations about the minimum point correspond to the physical spectrum, where excitations in
the radial direction correspond to massive particle, while excitations in the bottom of the well does
not cost any energy and therefore correspond to massless particles. The massless particles that do
not annihilate the vacuum are referred to as Goldstone bosons, and according to the Goldstone
Theorem there is one such particle for every broken generator of the symmetry. The Goldstone
bosons does not appear in the physical spectrum. Instead, their degree of freedom is given to
the gauge bosons, which by that obtain three polarization states, making them massive1. This
phenomena is often referred to as the gauge bosons gaining their mass from eating the Goldstone
bosons [4]. The fermions, on the other hand, gain their mass via the introduction of a Yukawa
term, as shown in Appendix C.

1A massive vector boson has three polarization states, two transverse states, ms = ±1 and one longitudinal state
ms = 0, while a massless vector boson only posses two transverse polarization states. This is due to the fact that
massless particles travels at the speed of light, which means that its helicity is Lorentz invariant. Helicity refers to
the direction of motion of a particle with respect to the direction of its spin, and it being Lorentz invariant refers to
us not being able to reverse its direction of motion by travelling faster than it does. The absence of a third helicity
state must correspond to the absence of ms = 0 [7].
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Figure 1: The mexican hat potential

The reason for choosing a negative µ2 has now become clear. With a positive µ2, we would only
have massive excitations, as shown in figure 2a. Such a scenario would not provide masses for the
gauge bosons, but instead introduce a whole spectrum of new, unwanted, massive particles.

Figure 2c displays the scenario of a linear term added to the potential. The slight tilt caused
by the odd linear term, means that the Goldstone bosons will gain a small mass. The particles are
thereby referred to as pseudo-Goldstone bosons, and will occur in the physical spectrum instead
of giving their degree of freedom to the gauge bosons. The tilted potential is present in chiral
perturbation theory, as covered in the following section. A linear term will also occur in the ex-
tension considered in this thesis. However, in the considered extension the linear term is globally
invariant while in chiral perturbation theory, it is not. The considered extension therefore exhibits
spontaneous symmetry breaking, while the chiral symmetry in QCD is broken explicitly.

(a) y = 6x2 + x4 (b) y = −6x2 + x4 (c) y = −6x2 + x4 − x

Figure 2: The potential part of the scalar Lagrangian for different signs of the µ-term (2a
positive, 2b negative, 2c negative, and with a linear term).

1.4 Chiral Perturbation Theory in QCD

The incapacity of calculating QCD in the low energy limit, where the coupling constant enters non-
perturbative magnitudes, lead to the development of chiral perturbation theory (ChPT). ChPT is
a low-energy effective theory which considers the approximate chiral symmetry experienced by the
lighest quarks, since their masses are negligible in relation to the confinement scale ΛQCD. The
technicolor extension considered in this thesis, which has its confinement scale at an even higher
energy, will borrow this phenomenology. Note however that the chiral symmetry of the considered
extension is an exact symmetry, which means that it will be broken spontaneously, instead of
explicitly, as in ChPT.

As will be shown shortly, the chiral symmetry in QCD can only be considered an exact symmetry
if quarks were massless. However, since the masses of the light quarks are negligible with respect to
the energy scale of QCD, the linear term may be treated as a perturbation of an exact symmetry.
For it to be considered a perturbation, we may only include the two, or three lightest quarks. In the
technicolor extension treated in this paper, we have chosen to consider the two-flavor case, q = u, d.
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That the chiral symmetry is an exact symmetry only in the massless scenario, can be seen from the
QCD Lagrangian. The free-particle Lagrangian for quarks, or any other fermion for that matter,
is given by the Dirac Lagrangian (constructed such that it yields the Dirac equation when inserted
into the Euler-Langrange equation):

L = q̄(iγµDµ −M)q.

where the wave function q and the mass matrix M, in the two flavor case, is given by:

q =

(
u
d

)
and M =

(
mu 0
0 md

)
,

and where the covariant derivative Dµ is introduced to preserve the local gauge invariance. By
separating the quark fields into their left- and right handed parts2, the Lagrangian becomes:

L = iq̄L��DqL + iq̄R��DqR − q̄RM qL − q̄LM qR (12)

where ��D = γµDµ. Besides being locally gauge invariant under rotations in color space, the two
first terms of the Lagrangian also exhibit a global chiral symmetry. The massless Lagrangian
remains invariant under separate transformations of left- and righthanded quarks; or in other
words: it remains invariant under the set of linear transformations, gL and gR, belonging to the
group SU(2)L ⊗ SU(2)R:

qR → gRqR, gR ∈ SU(2)R

qL → gLqL, gL ∈ SU(2)L.

The invariance of the first two terms of the Lagrangian is due to them only containing spinors
of the same handedness. One of the spinors in each term transforms as the complex conjugate
of the other. The infinitesimal rotations will therefore cancel each other out, gLg

†
L = 1. In the

mass terms, on the other hand, the transformations do not cancel each other, since gLg
†
R 6= 1.

Hence, the chiral symmetry in QCD is only exact in the massless scenario. Since the quarks are
not massless, the chiral symmetry is explicitly broken. An explicitly broken symmetry refers to
the fact that the Lagrangian contains terms which makes it non-invariant under the considered
symmetry transformation.

To be precise, the massless Lagrangian is invariant under SU(2)L ⊗ SU(2)R ⊗ U(1)V ⊗ U(1)A
[8]. However, we only need to consider SU(2)L⊗SU(2)R, since U(1)V determines baryon number
(not applicable for mesons), and since U(1)A has an anomaly [9].

At a certain energy scale (∼ ΛQCD), the global chiral symmetry in QCD, SU(2)L ⊗ SU(2)R,
spontaneously breaks down to its vector subgroup:

SU(2)L ⊗ SU(2)R → SU(2)V=R+L.

The unbroken symmetry is constructed from the subset of generators that annihilate the ground
state. This is easily seen by requiring the vacuum to be invariant under linear transformations
generated by Ti:

|0〉 → eiε(x)iTi |0〉 ' (1 + ε(x)aTa) |0〉 = |0〉 ,
2Using that

q̄q = q̄(P 2
L + P 2

R)q = q̄PLPLq + q̄PRPRq = q̄RqL + q̄LqR

and q̄γµq = q̄(P 2
L + P 2

R)γµ(P 2
L + P 2

R)q = q̄PLγ
µPLq + q̄PRγ

µPLq

+q̄PLγ
µPRq + q̄PRγ

µPRq = q̄Lγ
µqL + q̄Rγ

µqR

where PL and PR are projection operators.
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which is a condition only fulfilled if Ta |0〉 = 0. By an equivalent argument, the generators of the
broken subgroup (in our case the coset SU(2)A=R−L), do not annihilate the ground state, Ti |0〉 6= 0.

There are several ways of explaining why the vector subgroup remains invariant under the chosen
vacuum, while the axial vector subgroup does not. One version is to consider the conserved current
and charge operators of the quantized version of Noether’s theorem. Noether’s theorem states that
each continuous symmetry has a corresponding conserved charge. The charge is defined as the
space integral over the zeroth component of the current:

Qa(t) =

∫
d3xJa0 (~x, t)

and is time-independent if the current is conserved. The conserved current is defined as:

Jµ,a =
∂δL
∂∂µΘa

, ∂µJ
µ,a = 0. (13)

and the conserved charge, Q, is in fact the generator of the infinitesimal symmetry transformation
[6]. It is important to emphasize that the symmetry transformation is infinitesimal. The charge
operators Q shares the same Lie algebra as the generators of the global symmetry [10]:

[QaL, Q
b
L] = ifabcQ

c
L, [QaR, Q

b
R] = ifabcQ

c
R

[QaR, Q
b
L] = 0, (14)

which means that the two Lie groups (the one generated by the charge operators, and the one gener-
ated by the generators of the global symmetry) are locally isomorphic, i.e. they may be considered
identical under infinitesimal transformations about the identity. Further, we may investigate the
commutator relations for QaV and QaA:

[QaV , Q
b
V ] = [QaR +QaL, Q

b
R +QbL] = [QaR, Q

b
R] + [QaL, Q

b
L]

= ifabcQ
c
R + ifabcQ

c
L = ifabcQ

c
V

and

[QaA, Q
b
A] = [QaR −QaL, QbR −QbL] = [QaR, Q

b
R] + [QaL, Q

b
L] = ifabcQ

c
V

where we see that the commutator of two axial vectors is not an axial vector. Since this kind of
”parity doubling” (opposite-parity states with equal spin value) does not occur in the observed
spectrum, we conclude that the axial generators must be the ones broken:

QaA |0〉 6= 0, QaV |0〉 = 0.

Also, since the charge operator is constant in time (invariant), it commutes with the Hamiltonian,
which means that the Goldstone theorem applies. The broken axial charge generators may there-
fore be considered to be the pseudo-Goldstone bosons.

The origin of the subscripts V = R + L and A = R − L can be shown from the conserved
currents related to the QCD Lagrangian under an infinitesimal transformation:

δL0 = q̄R

(∑
a

∂µΘR
a

τa
2

+ ∂µΘR

)
γµqR + q̄L

(∑
a

∂µΘL
a

τa
2

+ ∂µΘL

)
γµqL.

Using equation 13, the corresponding conserved currents become:

Lµ,a =
∂δL0

∂∂µΘL
a

= q̄Lγ
µ τ

a

2
qL, Rµ,a =

∂δL0

∂∂µΘR
a

= q̄Rγ
µ τ

a

2
qR,
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which can be re-expressed in linear combinations defined as V and A:

V µ,a = Rµ,a + Lµ,a = q̄γµ
τa

2
q, Aµ,i = Rµ,a − Lµ,a = q̄γµγ5 τ

a

2
q.

It is now apparent that the currents are named after how they transform under parity [10].

The chiral symmetry is explicitly broken via the introduction of a linear term in the scalar La-
grangian, and each broken generator correspond to a massive pseudo-Goldstone boson. In the
two-flavor case, the three broken (axial) generators correspond to the three pions, π±, π0. In the
three-flavor case, the eight broken (axial) generators correspond to the three pions, the eta, η, and
the four kaons, K0, K̄0, K± [9].

The spontaneous chiral symmetry breaking is related to a non-zero quark condensate:

〈qq̄〉 6= 0.

I will not include the details here, since it is a vast and complicated subject, but it can be shown that
a condensate does indeed vanish whenever the ground state is invariant under chiral transformations
[11]. The condensate can therefore be viewed as a the source of the symmetry breaking, which is
a reasoning we will return to in the constructed extension.

1.5 The Gauged Linear Techni-Sigma Model

In analogy with QCD, the global chiral symmetry of the two lightest techniquarks (Ũ , D̃), is
spontaneously broken down to its vector subgroup: SU(2)L ⊗ SU(2)R → SU(2)V

3. The chosen
scalar field responsible for the chiral symmetry breaking is the field used in the linear sigma model:

Σ =
1

2
(S + iτaPa) (15)

where the sigma field S can be imagined as an expansion in the radial direction, in agreement with
the Higgs boson, and where the three π-fields correspond to the three pseudo-Goldstone bosons of
the theory.

After the chiral symmetry breaking, the remaining subgroup SU(2)V is gauged (i.e. made into
a local symmetry), and identified with the Standard Model symmetry group SU(2)W . That is,
instead of introducing new gauge bosons, corresponding to the new symmetry groups required by
a local gauge invariance, we choose the new gauge bosons to be the ones of the Standard Model
SU(2)W -group. Note that the identification is only valid in energies below the symmetry breaking-
scale.

In our case, the identification SU(2)V = SU(2)W , leads to the technifermions having the same
interactions as the fermions of the Standard Model, with exception for there being no distinction
between left- and righthanded fields, so-called vector-like interactions. Since the technifermions
couples to the gauge bosons of the Standard Model, they will contribute to their self-energy cor-
rections. The contribution provides an opportunity to test whether our new model is plausible or
not, as explained in section 1.6.

1.5.1 The CSTC Lagrangian

We will now begin constructing the Lagrangian of our chirally symmetric techni-color (CSTC)
extension. The scalar Lagrangian responsible for the the chiral symmetry breaking, consists of all
gauge invariant terms with dimension 4 that can be constructed with the Σ-field, namely:

L = (∂µΣ)†(∂µΣ)− µ2Σ†Σ− λ(Σ†Σ)2

3We also assume the technifermion sector to be confined under SU(3)TC , in analogy with SU(3)c in QCD.
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=
1

2
∂µS∂

µS +
1

2
DµPD

µP +
1

2
µ2
s(S

2 + P 2)− 1

4
λTC(S2 + P 2)2 (16)

using that

|Σ|2 = ΣijΣ
†
ji = tr(ΣΣ†) =

1

4

(
S + iP 3 iP 1 + P 2

−iP 1 − P 2 S − iP 3

)(
S − iP 3 −iP 1 − P 2

−iP 1 + P 2 S + iP 3

)

=
1

4
tr

(
S2 + (P 1)2 + (P 2)2 + (P 3)2 ...

... S2 + (P 1)2 + (P 2)2 + (P 3)2

)
=

1

2
(S2 + P 2).

and where the covariant derivative of the pion field is given by:

DµPa = ∂µPa + gεabcW
b
µPc, (17)

We may include the SM Higgs field in the same scalar Lagrangian, in addition to all allowed mix
terms between the Higgs- and the S- and P -fields. The potential part of the Lagrangian then
becomes:

LU,self =
1

2
µ2
s(S

2 + P 2) +
1

2
µ2
HH†H−

1

4
λTC(S2 + P 2)2 − λH(H†H)2 + λH†H(S2 + P 2). (18)

Since the technifermions in our extension interact under the same symmetry group as the ordinary
fermions of the Standard Model, they will possess the same kind of kinetic term:

Lkin = i
¯̃
QγµDµQ̃, (19)

where Dµ is the covariant derivative of the Standard Model, as introduced in equation 9. The
technifermions will however not gain their masses via the Higgs mechanism, since such a Yukawa
term is not allowed. Both the left- and the right-handed technifermions are doublets under SU(2)W ,

which means that they are written into one single Yukawa term gTC
¯̃
QHQ̃, which would not have

mass dimension 4. Instead, the Yukawa term includes the Σ-field:

LY = −gTC
¯̃
Q(S + iγ5τaPa)Q̃, (20)

which means that the technifermions gain their mass via the breaking of the chiral symmetry. The
first term of equation 20 is a scalar Yukawa term gψφψ, and the second a pseudoscalar Yukawa
term gψiγ5φψ, both gauge invariant under the symmetry and with dimension 4. The Yukawa term
is included in the potential part of the Lagrangian, after the expectation value has been taken on
everything but the sigma field:

LU,source = −gTCS 〈 ¯̃QQ̃〉 . (21)

Hence, the total CSTC-Lagrangian, is given by

LCSTC = LT + LU,self + LU,source
where the kinetic term is given by equation 19, and the first two terms in equation 16:

LT =
1

2
∂µS∂

µS +
1

2
DµPaD

µPa + i
¯̃
QD̂Q̃ (22)

10



Note that since the Yukawa term only can be constructed with the Σ-field, the technipions gain
their mass when the chiral symmetry is already broken down to SU(2)V . Since gL = gR for the
vector subgroup, and since the Σ-field transforms as:

Σ→ gLΣg†R,

the mass terms are invariant, in oppose to the mass terms in QCD. Ergo, the symmetry is sponta-
neously broken, instead of being explicitly broken. The technipions become, as in QCD, massive
pseudo-Goldstone bosons, due to the linear source term (21).

1.5.2 The mixing of the H- and S fields

There are several examples from the Standard Model (neutrino mixing, quark-flavour mixing, elec-
troweak mixing), where the interaction eigenbasis of two or more fields with identical quantum
numbers, differs from their mass eigenbasis. The phenomena is perhaps most clearly established in
the case of electroweak mixing in the leptonic sector. Due to the identical quantum numbers of the
Bµ- and W 0

µ fields, they share common interactions with the leptonic sector, as shown in Appendix
B. However, since it is known from experiments that the Aµ-field does not interact with neutrinos,
the mass eigenbasis and interaction eigenbases clearly must differ. In the CSTC-extension as we
have here, there is no such demand for the eigenbases to differ, although we must account for the
possibility.

The system in the mass eigenbasis must be diagonal, since this is the basis in which we mea-
sure observables. Hence, the relation between the two bases needs to ensure a diagonalization of
the system, when moving from the interaction eigenbasis to the mass eigenbasis. The diagonal-
ization is ensured by a unitary matrix, since it is the equivalence to the matrix constructed of
eigenvectors:

(
H ′ S′

)
A

(
H ′

S′

)
=
(
H ′ S′

)
U−1DU

(
H ′

S′

)

=
(
h σ̃

)
D

(
h
σ̃

)
= λm,1h

2 + λm,2σ̃
2 (23)

where {H ′, S′} is the interaction eigenbasis, {h, σ̃} is the mass eigenbasis, U is the matrix con-
structed with the eigenvectors as columns and is a unitary matrix, A is the mass matrix in the
interaction eigenbasis:

A =

(
m2

11 m2
12

m2
21 m2

22

)
,

and D is the diagonalized mass matrix:

D =

(
m2
h 0

0 m2
σ̃

)
.

A unitary matrix is generally written as a complex rotation matrix. In the 2x2 scenario, the
rotation matrix can be made real, since there are enough fields for absorbing all phases. Hence,
equation 23 can be rewritten as:

(
H ′ S′

)
A

(
H ′

S′

)
=
(
H ′ S′

)
R−1DR

(
H ′

S′

)
=
(
h σ̃

)
D

(
h
σ̃

)
(24)

where R is a real 2x2 rotation matrix. The relation between the interaction eigenbasis, {H,S}
(hereby referred to as the gauge eigenbasis) and the mass eigenbasis {h, σ̃} is therefore described
by: (

H ′

S′

)
=

(
cos θ − sin θ
sin θ cos θ

)(
h
σ̃

)
(25)

11



such that {
H ′ = h cos θ − σ̃ sin θ

S′ = h sin θ + σ̃ cos θ
(26)

The mixing angle θ may possess any value inbetween zero and 2π. If the mixing angle turns out to
be nonzero, which is rather likely, the gauge eigenbasis and mass eigenbasis differ from each other.
When there, on the other hand, is no difference between the bases, the unitary matrix simply
becomes the identity matrix.

In the mass eigenbasis, the SM Higgs- and the Technisigma fields are given by:

H = v + hcθ − σ̃sθ, S = u+ hsθ + σ̃cθ (27)

where

H =
1√
2

(
0

v +H ′(x)

)
, 〈H〉 =

1√
2

(
0
v

)
, 〈S〉 = u, 〈P〉 = 0 (28)

Note that the Technisigma VEV is not necessarily larger than the Higgs VEV. Their relative
hierachy will be explored in the result section, and turn out to be dependent on the hσ̃-mixing
angle.

1.5.3 The scale of the new dynamics

The confinement scale in QCD, ΛQCD ∼ 200 MeV, denotes the limit when the running coupling
constant enters non-perturbative values. This scale is of the same order as the (explicit) chiral
symmetry breaking [8]. By the same argument, the confinement scale of our extension is assumed
to be in the order of ΛTC ∼ u, where u & v ∼ 200 GeV, which means that:

ΛTC/ΛQCD & 1000. (29)

In a naive estimate, the masses of the extension follows the same mass hierarchy as in QCD, where
all masses are simply scaled up by a factor 1000:

mπ̃ & 140 GeV, Mσ̃ & 500 GeV

MQ̃ & 300 GeV. (30)

1.6 The Peskin–Takeuchi Parameters

The existence of new physics would alter, among other things, the self-energy contributions to W ,
Z and γ. Peskin and Takeuchi introduced three parameters, S, T and U, with well-known values
and constraints from electroweak precision measurements [13]:

S = 0.00+0.11
−0.10, T = 0.02+0.11

−0.12, U = 0.08± 0.11. (31)

Hence, a deviation caused by new physics needs to stay within the boundary conditions in order
to be plausible.

Note that the Peskin–Takeuchi (PT) parameters only consider oblique corrections. Oblique correc-
tions refers to loop corrections where the loop propagators which does not couple directly to the
external fermions [5]. Ergo, the S, T, U formalism assumes that the new particles only enter the
weak interactions indirectly. Furthermore, the formalism assumes that new physics will not add
an additional electroweak symmetry. Since each generator of a symmetry group corresponds to a

12



gauge boson, the assumption states that there will be no other electroweak gauge bosons than W ,
Z and γ, which is fulfilled for our extension. Ergo, there are no additional anti-screening effects
contributing to the PT-parameters, only screening effects. The S, T, U parameters are defined as:

αS = 4s2
W c

2
W

[
δΠZZ(M2

Z)− δΠZZ(0)

M2
Z

− c2W − s2
W

sW cW
δΠ′Zγ(0)− δΠ′γγ(0)

]
,

αT =
δΠWW (0)

M2
W

− δΠZZ(0)

M2
Z

,

αU = 4s2
W

[δΠWW (M2
W )− δΠWW (0)

M2
W

− c2W
δΠZZ(M2

Z)− δΠZZ(0)

M2
Z

−2sW cW δΠ
′
Zγ(0)− s2

W δΠ
′
γγ(0)

]
(32)

where ΠXY are the vacuum polarization functions to the gauge bosons W, Z and γ, and where
δΠ′XY (q2) is defined as dδΠ/dq2.

Whenever the energy scale is large in comparison to the electroweak scale, ΛTC � MEW , we
may work in the linear order in q2 (where q2 corresponds to the gauge bosons mass, since they are
on-shell):

δΠXY (q2)− δΠXY (0)

q2
= δΠ′XY (0) +���

���:
0

O(q4/Λ4
TC) ,

which also infers that the mass difference of Z and W is negligible:

δΠWW (M2
W )− δΠWW (0)

M2
W

=
δΠWW (M2

Z)− δΠWW (0)

M2
Z

+��
���

�:0
O(q4/Λ4

TC)

Hence, in the linear order of q2, the PT-parameters simplify to:

αS = 4s2
wc

2
w

[
δΠ′ZZ(0)− c2W − s2

W

sW cW
δΠ′Zγ(0)− δΠ′γγ(0)

]
,

αT = δΠ′WW (0)− δΠ′ZZ(0) = 0,

αU = 4s2
w

[
δΠ′WW (0)− c2wδΠ′ZZ(0)− 2swcwδΠ

′
Zγ(0)− s2

wδΠ
′
γγ(0)

]
. (33)

where we note that T=0. The expression δΠXY (q2) denotes the deviation of the vacuum polariza-
tion functions from SM results. The new physics-contributions come from the introduced particles
(the technipions, the technisigma and the technifermions), in addition to the modified couplings
of the SM-Higgs, minus its original contribution:

δΠXY (q2) = Πnew
XY (q2) + Πh

XY (q2)−ΠSM,h
XY (q2),

where

Πnew
XY (q2) = Ππ̃

XY (q2) + ΠQ̃
XY (q2) + Πσ̃

XY (q2). (34)

The interpretation of the S, T, U-parameters and the vacuum polarization functions will be clarified
when they are explicitly calculated in the result-section. Bear in mind that the S, T, U formalism
is not applicable if the new physics violates the assumptions made.
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1.6.1 Dimensional Regularization

In the case of tree-level diagrams, the momenta of the internal propagators are uniquely deter-
mined by the momenta of the external propagators (via the use of delta functions). When it comes
to higher order corrections, such as the oblique corrections considered in this thesis, the diagrams
involve integration over undefined loop momenta which may lead to divergences. Dimensional
regularization is one of the methods to deal with these divergences.

Divergences are functions of the dimension of space-time, for example the integral (where D1

and D2 are the two loop propagators)

∫
d4k

(2π)4

1

D1D2
=

∫
d4k

(2π)4

1(
k2 −m2

1

)(
(k − q)2 −m2

2

)
is finite in three dimensions, while being logarithmically divergent in four dimensions [6]. Hence,
for a sufficiently small d, where d is a complex number, any loop integral will converge. After the
integration is performed, one takes the limit d → 4 − 2ε, which should produce finite results for
any physical quantity. The features of this regularization scheme will be displayed in further detail
when used in the result section.

Dimensional regularization is a popular alternative to the Pauli-Villars- and Cut-off schemes. Ma-
nipulations in dimensional regularization are simple, and the scheme is gauge invariant (since gauge
invariance is independent of the number of space-time dimensions).
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2 Method

The results presented in this thesis are a reproduction of the paper ”Chiral-Symmetric Technicolor
with Standard Model Higgs boson”, published 2013 by R. Pasechnik et al. [14]. However, since the
paper mainly states its final results, it allowed for calculations being carried out in an independent
and creative manner (in particular the loop evaluations).

All calculations were performed analytically, with exception from the final (numerical) evalua-
tions of the loop diagrams and some of the vertex factors, obtained using Mathematica. The
vertices were retrieved using a custom-made program named FeynArts [18].
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3 Results

3.1 The Physical CSTC Lagrangian

This section includes the physical CSTC Lagrangian, i.e. the Lagrangian after the two spontaneous
symmetry breakings. The section begins with relating the technipion mass, the higgs VEV and
the technisigma VEV to the techniquark condensate, and continues with presenting the various
parts of the physical Lagrangian. Mass terms, interaction terms and mixing angles are divided
into separate subsections, for clarity.

3.1.1 The Vacuum Stability Equations

Vacuum stability refers to the requirement that the VEV is a minimum point of the potential.
Using this requirement we may relate the technipion mass, the Higgs VEV and the technisigma
VEV, to the techniquark condensate.

In order for the VEV to be an extremum, the derivative of the potential Lagrangian with re-
spect to the VEV should be zero:〈

δLCSTCU

δH

〉
= 0 ⇔ ∂

〈
LCSTCU

〉
∂v

= 0

=
∂

∂v

(1

2
µ2
Su

2 +
1

2
µ2
Hv

2 − 1

4
λTCu

4 − 1

4
λHv

4 +
1

2
λv2u2 − gTCu

〈
¯̃
QQ̃
〉)

= v(µ2
H − λHv2 − λu2) = 0 (35)

and similarly

〈
δLCSTCU

δS

〉
= 0 ⇔ ∂

〈
LCSTCU

〉
∂u

= 0

=
∂

∂u

(1

2
µ2
Su

2 +
1

2
µ2
Hv

2 − 1

4
λTCu

4 − 1

4
λHv

4 +
1

2
λv2u2 − gTCu

〈
¯̃
QQ̃
〉)

= u

(
µ2
S − λTCu2 + λv2 −

gTC

〈
¯̃
QQ̃
〉

u

)
= 0 (36)

Combining this equation with the result for the technipion mass in equation 43, yields a relation
between the technipion mass and the techniquark condensate:

m2
π̃ = −

gTC

〈
¯̃
QQ̃
〉

u
(37)

where gTC is positive and
〈

¯̃
QQ̃
〉

defined as negative. Hence, equation 35 and 36 can be simplified

to: {
µ2
S = λTCu

2 − λv2 −m2
π̃

µ2
H = λHv

2 − λu2
⇔

v
2 =

λTCµ
2
H−λ(µ2

S+m2
π̃)

λTCλH−λ2

u2 =
λH(m2

π̃+µ2
s)+λµ

2
H

λHλTC−λ2

(38)

which displays the relation between the VEV:s and the techniquark condensate.

Furthermore, requiring the extremum to be a minimum point, poses conditions on the scalar
self-couplings λTC and λH . The second derivative test for a bivariable function, such as LCSTCU ,
is defined as
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D(x, y) = det(H(x, y)) = fxxfyy − f2
xy, H(x, y) =

(
fxx fyx
fxy fyy

)
where H(x, y) is the so-called Hessian. The extreme value is a minimum point if both the deter-
minant of the Hessian and fxx are positive [20]. In our case, this scenario corresponds to:〈

δ2LCSTCU

δS2

〉〈
δ2LCSTCU

δH2

〉
−
〈
δ2LCSTCU

δHδS

〉2

> 0, (39)

and 〈
δ2LCSTCU

δS2

〉
< 0 or

〈
δ2LCSTCU

δH2

〉
< 0,

where the sign is flipped since U = −LCSTCU . Using these conditions on the CSTC-Lagrangian
yields:

〈
δ2LCSTCU

δS2

〉
=

∂

∂u

(
uµ2

S − λTCu3 + uλv2 − gTC

〈
¯̃
QQ̃
〉)

= µ2
S − 3λTCu

2 + λv2 < 0,

⇔ λTC > −m
2
π̃

2u2
,

and 〈
δ2LCSTCU

δH2

〉
=

∂

∂v

(
vµ2

H − λHv3 − vλu2
)

= µ2
H − 3λHv

2 − λu2 < 0

⇔ λH > 0.

using the conditions for the first order derivative in (36) and (35), respectively. That λH does not
adopt negative values, which will display itself in the parameter space-plots in subsection 3.1.5.

3.1.2 The Mass Terms

3.1.2.1 The Mass of the Higgs and Technisigma

As opposed to gauge fields, where the masses are found through the kinetic term, the Higgs-
type fields get their mass through the potential term. From equation 24, it is apparent that there
are two methods of obtaining the masses of h and σ̃. Either, one starts in the undiagonalized gauge
basis {H ′, S′}, by inserting H = v + H ′ and S = u + S′ into the potential CSTC Lagrangian of
equation 18 (i.e. expanding about the VEV without introducing the mixing), or one starts in the
automatically diagonalized mass basis {h, σ̃} by inserting H = v+hcθ− σ̃sθ and S = u+hsθ+ σ̃cθ
into said Lagrangian. After diagonalizing the first method, the two results are of course identical.
For demonstrational purposes, I will show both methods in this section.

Starting in the gauge basis, and disregarding the P-field, which will not affect the higgs- and
technisigma masses, the CSTC Lagrangian of equation 18 becomes:

LCSTCU,self =
1

2
µ2
S(u+ S′)2 +

1

2
µ2
H(v +H ′)2 − 1

4
λTC(u+ S′)4 − 1

4
λH(v +H ′)4

+
1

2
λ(v +H ′)2(u+ S′)2.

Solving for all terms involving two fields (the mass terms), we may construct the mass matrix A:
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A =

(
m2

11 m2
12

m2
21 m2

22

)
=

(
2λTCu

2 +m2
π̃ −2λuv

−2λuv 2λHv
2

)
. (40)

where the off-diagonal terms are identical, m2
12 = m2

21 and corresponds to (1/2) of the m2
12H

′S′-
term, since the mass matrix is symmetric:

(
H ′ S′

)
A

(
H ′

S′

)
=
(
H ′ S′

) (m2
11 m2

12

m2
21 m2

22

) (
H ′

S′

)
= m2

11H
′2 + 2m2

12H
′S′ +m2

22S
′2

The masses of h and σ̃, are determined from diagonalizing the mass matrix A. The diagonalization
of A is performed by determining the matrix eigenvalues, which will be the two diagonal entries in
the diagonalized mass matrix:

det

(
m2

11 − λm m2
12

m2
21 m2

22 − λm

)
= 0

⇔ λm =
m2

11 +m2
22

2
±
√
m2

12m
2
21 −m2

11m
2
22 +

(
m2

11 +m2
22

2

)2

=
1

2

[
m2

11 +m2
22 ±

√
4m2

12m
2
21 + (m2

11 −m2
22)2

]
.

Introducing the entries in the mass matrix A, yields the eigenvalues:

⇒ λm =
1

2

[
2λTCu

2 +m2
π̃ + 2λHv

2 ±
√

(2λTCu2 +m2
π̃ − 2λHv2)2 + 16λ2u2v2

]
(41)

where the negative solution correspond to the mass of the higgs, and the positive solution to the
mass of the technisigma.

If we instead start off in the mass eigenbasis, i.e. including the mixing when expanding about
the VEV:s, the potential Lagrangian becomes:

LCSTCU,self =
1

2
µ2
S(u+ h sin θ + σ̃ cos θ)2 +

1

2
µ2
H(v + h cos θ − σ̃ sin θ)2

−1

4
λTC(u+ h sin θ + σ̃ cos θ)4 − 1

4
λH(v + h cos θ − σ̃ sin θ)4

+
1

2
λ(v + h cos θ − σ̃ sin θ)2(u+ h sin θ + σ̃ cos θ)2.

By identifying h2, hσ̃ and σ̃2-terms, the following mass equations are found (simplified using
trigonometric identities, and the vacuum stability conditions from equation 38):

m2
11 = sin2 θ(2λTCu

2 +m2
π̃) + 2λHv

2 cos2 θ − 4uvλ sin θ cos θ,

m2
22 = cos2 θ(2λTCu

2 +m2
π̃) + 2λHv

2 sin2 θ + 4uvλ sin θ cos θ,

m2
12 = m2

21 = 1
4

[
sin 2θ

(
2λHv

2 − 2λTCu
2 −m2

π̃

)
+ 4λuv cos 2θ

]
,

(42)

Since we are working in the mass eigenbasis, the mass matrix is already diagonalized. Ergo,
m2

12 = 0, m2
11 = m2

h and m2
22 = m2

σ̃, in the equation above. To get rid of the angles from the
mass of the higgs and technisigma, one inserts the expression for the mixing angle of equation
49. The result is identical to equation 41 (found when diagonalizing the gauge basis). However,
the simplifications are not shown here since the analytical calculation require a tedious amount of
algebra.
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3.1.2.2 The Mass of the Technipion

The mass of the technipion is found by keeping only the terms quadratic in P from the initial
Lagrangian of equation 18. Ergo, the second and fourth term can be removed immediately, S2 is
removed from the first and fifth term, and from the third term and fifth term, only the VEV from
S2 and H, respectively, are kept:

L =
1

2
µ2
SP

2 − 1

4
λTC2u2P 2 +

1

2
λv2P 2

= (
1

2
µ2
S −

1

4
λTC2u2 +

1

2
λv2)(π̃0π̃0 + 2π̃+π̃−)

where P 2 =
∑
a PaPa = π̃0π̃0 +2π̃+π̃−. The massterm of a pseudo-scalar field is given by − 1

2m
2P 2

[4], hence:

m2
π̃ = λTCu

2 − λv2 − µ2
S (43)

By comparing this mass term to the tadpole equations, we note that the technipion mass would
have been zero if it was not for the linear source term. This notion agrees with that fact that
the Goldstone boson of a non-tilted potential should be zero (which the 3-dimensional Lagrangian
would have corresponded to, if it was not for the source term).

3.1.2.3 The Mass of the Techniquark

The masses of techni-quarks are found through the Yukawa term in equation 20:

LCSTCY = −gTC
¯̃
Q(S1 + iγ5τaPa)Q̃

= −gTC
¯̃
Qu1Q̃− gTC

¯̃
Q(hsθ + σ̃cθ)1Q̃− igTC

¯̃
Qγ5τaPaQ̃ (44)

using that S = u+ S′ = u+ hsθ + σ̃cθ. The masses of the techniquarks are given by the very first
term of equation 44, while the latter terms explains their interactions with the higgs-, technisigma-
and pion fields, and are treated in the following section:

LCSTCY = −gTC
¯̃
Qu1Q̃ = −gTC

(
¯̃
U
¯̃
D

)(
u 0
0 u

)(
Ũ

D̃

)
= −gTCu

( ¯̃
UŨ +

¯̃
DD̃

)
⇒ mŨ = mD̃ = gTCu (45)

since the mass terms of fermions are defined as −m2ψ†ψ. Note that the masses are degenerate.
When comparing with the Yukawa term in the SM (C), we notice that the mass terms will always
be degenerate for a chirally symmetric theory.

3.1.2.4 The Mass of the W- and Z bosons

The masses of the W- and Z bosons are already known from the Standard Model, but I chose
to include the derivation here, since the mass terms are used for simplifying interaction terms in
the following section.

The mass-terms of the gauge fields are determined by inserting the covariant derivative corre-
sponding to the U(1) and SU(2) symmetries into the kinetic term of the Higgs Lagrangian:

(Dµφ)†(Dµφ) = φ†
(
ig1

Y

2
Bµ + ig2

τ

2
Wµ

)†(
ig1

Y

2
Bµ + ig2

τ

2
Wµ

)
φ = ...

=

(
1

2
vg2

)2

W+
µ W

−µ +
1

8
v2(g1Bµ − g2W

0
µ)2, (46)
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The first term of equation 46 is a mass-term for the charged W, since charged gauge bosons have
mass-terms of the form m2F+

µ F
−µ. Hence:

MW =
vg2

2
. (47)

The second term can be identified as the mass-term for Zµ when comparing the equation with
equation 125 (using YL = −1). The mass-term of a neutral field is given by (m2FµF

µ)/2, which
means that:

MZ =
1

2
v
√
g2

1 + g2
2 . (48)

3.1.3 The Mixing Angle

The mixing angle is most conveniently found by starting in the mass eigenbasis, i.e. by expanding
H and S in terms of h and σ̃. Since the mass matrix is automatically diagonalized in the mass
eigenbasis, the off-diagonal terms may be put to zero, from which an angle can be solved for.
Putting equation m2

12, from equation 42, to zero, and dividing each term with cos 2θ, yields the
condition for the mixing angle θ:

m2
12 = 0 ⇔ tan2θ =

4λuv

2λTCu2 +m2
π̃ − 2λHv2

(49)

3.1.4 The Interaction Terms

3.1.4.1 The Vector-like Interactions of the Pion Field

The vector-like interactions of technipions, are given by the second term in equation 22:

1

2
DµPaD

µPa =
1

2

[
DµP1D

µP1 +DµP2D
µP2 +DµP3D

µP3

]
.

The covariant derivative can be expressed according to equation 17, where the Levi-Civita symbol
gives a total of six possible permutations of a, b, c. Even permutations yield +1 and uneven -1,
since the Levi-Civita symbol is completely antisymmetric in all indices:

⇒ 1

2
DµPaD

µPa =
1

2

[
∂µP1 + g2(W 2

µP3 −W 3
µP2) + ∂µP2 + g2(W 3

µP1 −W 1
µP3)

+∂µP3 + g2(W 1
µP2 −W 2

µP1)
]
. (50)

After the W 1,2,3
µ - and P 1,2,3-fields are expressed in terms of W±,0µ and π̃±,0, according to:

W 3
µ = W 0

µ = cosZµ + sinAµ

W 2
µ = i(W−µ −W+

µ )/
√

2

W 1
µ = −(W−µ +W+

µ )/
√

2

and


P 3 = π̃0

P 2 = i(π̃− − π̃+)/
√

2

P 1 = −(π̃− + π̃+)/
√

2

. (51)

and after all brackets are expanded, the vector-like interactions of the technipions can be identified.
The vector-like interactions are simply all terms involving two pi-fields and one, or more, gauge
field (the gauge field being either Aµ, Zµ or W±). Due to the extensive length of the fully expanded
expression, and due its trivial nature, I have chosen to only include the final result, which is:

LCSTCπ̃π̃V = ig2W
+
µ

(
π̃0∂µπ̃

− − π̃−∂µπ̃0
)

+ ig2W
−
µ

(
π̃+∂µπ̃

0 − π̃0∂µπ̃
+
)

+ig2W
0
µ

(
π̃−∂µπ̃

+ − π̃+∂µπ̃
−)+ g2

2W
−
µ W

µ+
(
(π̃0)2 + π̃−π̃+

)
+ g2

2(W 0
µ)2π̃+π̃−

−g2
2W

0
µW

−
µ π̃

0π̃+ − g2
2W

0
µW

+
µ π̃

0π̃− + ... (52)
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3.1.4.2 The Vector-like Interactions of the Techniquarks

The interactions between techniquarks and the gauge bosons of the Standard Model, is given by
the third term in the kinetic CSTC-Langrangian of equation 22. The term is similar to the Stan-
dard Model interaction between fermions and gauge bosons, and hence the physical Lagrangians
are identical as well (apart from there being no distinction between right and left, there only being
two flavours of quarks and no leptons, and there being no SU(3) symmetry group). The physical
Lagrangian of the Standard Model-scenario is given in Appendix B, and translates to:

L =
∑

f=Ũ,D̃

eQf f̄γ
µfAµ

+
g2

cW

∑
f=Ũ,D̃

f̄γµf(T 3
f −Qfs2

W )Zµ

+
g2√

2
(
¯̃
UγµD̃W+

µ + h.c.) (53)

3.1.4.3 The Vector-like Interactions of the Higgs and Technisigma

The interactions between the gauge bosons of the Standard Model, and the Higgs field, are al-
tered, due to H ′ now being a linear combination of h and σ̃. The kinetic term of the Higgs
Lagrangian then becomes:

L = (DµH)†(DµH) = H†
(
ig1

Y

2
Bµ + ig2

τa
2
Wµa

)†(
ig1

Y

2
Bµ + ig2

τa
2
Wµ
a

)
H

=
1

8

∣∣∣∣(g1Bµ + g2W
0
µ −g2

√
2W+

µ

−g2W
−
µ g1Bµ − g2W

0
µ

)(
0

v + hcθ − σ̃sθ

)∣∣∣∣2
=

1

4
g2

2W
+
µ W

µ−(v + hcθ − σ̃sθ)2 +
1

8
(g1Bµ − g2W

0
µ)2(v + hcθ − σ̃sθ)2

where the (g1Bµ−g2W
0
µ) -term can be identified as (−Zµ

√
g2

1 + g2
2) from equation 125 in Appendix

B (using YL = −1):

⇒ L =
1

4
g2

2W
+
µ W

µ−(v + hcθ − σ̃sθ)2 +
1

8
ZµZ

µ(g2
1 + g2

2)(v + hcθ − σ̃sθ)2. (54)

By expanding this Lagrangian, we get the interaction between σ̃ and the gauge bosons (using the
mass of the W-boson found in equation 47, and the mass of the Z-boson found in equation 48):

Lσ̃WW + Lσ̃ZZ = −g
2
2

2
W+
µ W

µ−vσ̃sθ −
1

4
ZµZ

µ(g2
1 + g2

2)vσ̃sθ

= −g2MWW
+
µ W

µ−σ̃sθ −
1

2
ZµZ

µ
√
g2

1 + g2
2MZ σ̃sθ, (55)

the interaction between h and the gauge bosons (simplified in the same manner):

LhWW + LhZZ = g2MW cθhW
+
µ W

µ− +
1

2
ZµZ

µ
√
g2

1 + g2
2MZhcθ, (56)

and the quartic terms, h2V V , hσ̃V V and σ̃2V V (easily read off from equation 54):

Lσ̃2V V + Lh2V V + Lhσ̃V V = (hcθ − σ̃sθ)2
(1

4
g2

2W
+
µ W

µ− +
1

8
ZµZ

µ(g2
1 + g2

2)
)
,
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3.1.4.4 The Interactions between the technipion and the Higgs and Technisigma

Interactions of type hπ̃π̃ and σ̃π̃π̃ are found from keeping the terms linear in h and σ̃, while
quadratic in P, from equation 18. Ergo, the first, second and fourth term are immediately disre-
garded, in addition to only keeping the terms linear in h from H2 and the terms linear in σ̃ from
S2:

L = −1

4
λTC(2uhsθ + 2uσ̃cθ + P 2)2 +

1

2
λ(2vhcθ − 2vσ̃sθ)P

2

where yet some more terms can be disregarded from the expansion of the first term. This yields:

L = −1

4
λTC(4uhsθ + 4uσ̃cθ)P

2 +
1

2
λ(2vhcθ − 2vσ̃sθ)P

2.

which can be divided into the separate results for the technisigma and the Higgs field:

Lhπ̃π̃ = −(λTCuhsθ − λvhcθ)P 2,

and

Lσ̃π̃π̃ = −(λTCuσ̃cθ + λvσ̃sθ)P
2.

3.1.4.5 Techniquark Interactions from the Yukawa Term

The interactions of techni-quarks with h, σ̃ and π̃ are found through the expansion of last two
terms of the Yukawa-term of equation 44, where:

τaPa = τ1P1 + τ2P2 + τ3P3 =

(
0 1
1 0

)
P1 +

(
0 −i
i 0

)
P2 +

(
1 0
0 −1

)
P3

=

(
P3 P1 − iP3

P1 + iP2 −P3

)
=

(
π0 −

√
2π+

−
√

2π− −π0

)
using the linear combinations of equation 51 for performing the last simplication. Hence, the
Lagrangian becomes:

LCSTCY = −gTC

(
¯̃
U
¯̃
D

)(
hsθ + σ̃cθ 0

0 hsθ + σ̃cθ

)(
Ũ

D̃

)

−igTC

(
¯̃
U
¯̃
D

)
γ5

(
π0 −

√
2π+

−
√

2π− −π0

)(
Ũ

D̃

)

= −gTC

(
σ̃cθ + hsθ

)( ¯̃
UŨ +

¯̃
DD̃

)
− igTC

( ¯̃
Uγ5Ũ π̃

0 −
√

2
¯̃
Uγ5D̃π̃

+ −
√

2
¯̃
Dγ5Ũ π̃

− − ¯̃
Dγ5D̃π̃

0
)

= −gTC

(
σ̃cθ + hsθ

)( ¯̃
UŨ +

¯̃
DD̃

)
− igTCπ̃

0
( ¯̃
Uγ5Ũ − ¯̃

Dγ5D̃
)

+ i
√

2gTCπ̃
+ ¯̃
Uγ5D̃

+i
√

2gTCπ̃
− ¯̃
Dγ5Ũ
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3.1.4.6 Fermion Interactions from the Yukawa Term

The Yukawa term in Appendix C, equation 129 (which describes the fermion interactions of the
Standard Model) will be altered, now that there is a new expression for the Higgs field:

H ′ = hcθ − σ̃sθ ⇒ L = −mf

v
f̄fH ′ = −mf

v
f̄f(hcθ − σ̃sθ).

Using the expression for the mass of the W-bosons in equation 47, the interaction term can be
rewritten as:

L = − g2mf

2MW
f̄f(hcθ − σ̃sθ).

3.1.5 The Parameter Space

From the mass terms of the higgs and technisigma in equation 41, and from the mixing angle in
equation 49, we can find expressions for the coupling constants as functions of the masses, the
coupling constant gTC and the mixing angle alone:

λTC =
1

2u2

(
−m2

π̃ +M2
σ̃c

2
θ +M2

hs
2
θ

)
=

g2
TC

2M2
Q̃

(
−m2

π̃ +M2
σ̃(1− s2

θ) +M2
hs

2
θ

)
, (57)

λ = ± 1

2uv

(
M2
σ̃ −M2

h

)
cθsθ = ± gTC

2MQ̃v

(
M2
σ̃ −M2

h

)
cθsθ, (58)

λH =
1

2v2

(
M2
σ̃s

2
θ +M2

h(1− s2
θ)
)
. (59)

where the Sigma VEV was re-expressed using equation 45. Note that by doing this, we go from
explaining our theory in terms of the seven parameters:

λ, λTC , λH , gTC, 〈 ¯̃QQ̃〉 , µ2
H and µ2

S

to another, equivalent, set of seven parameters:

Mσ̃, mπ̃, MQ̃, gTC, sθ, v and Mh

where MQ̃ and gTC constitute the technisigma VEV. Since the mass of the Higgs and its VEV are
known, there are only five parameters left to vary. Besides decreasing the amount of variables, the
change is preferable, since the parameter space is now expressed in terms of measurable quantities.

The equations can be used to plot the coupling constants as a function of sin θ. The results
for λTC , λ and λH , are shown in figure 3, 4 and 5, respectively. The parameter space is explored
by varying one parameter at a time, in the ranges:

gTC = 1, 1.5, 2, Mσ̃ = 400, 500, 700 GeV

MQ̃ = 300, 400, 500 GeV and mπ̃ = 150, 250, 350 GeV.

The ranges are constructed using the constraints on the masses found in (30), and the varying is
performed such that the mass hierarchy is preserved in each plot. gTC is varied in agreement to
equation 45, using that the Sigma VEV should be larger than the Higgs VEV: u & v ' 246 GeV.
Note that sθ is plotted from 0 to 1, even though it is allowed to vary from -1 to 1. The reason
for this is that such a plot would not add any information, after informing that λTC and λH is
symmetric with respect to sθ → −sθ, while λ is antisymmetric with respect to the same thing.
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Figure 3: The coupling constant λTC as a function of the mixing angle sin θ. The dashed-dotted
(red), solid (green) and dashed (blue) lines in each plot correspond to the variation of one

parameter at a time: (1) gTC = 1, 1.5, 2, MQ̃ = 300 GeV, mπ̃ = 150 GeV and Mσ̃ = 500 GeV.

(2) gTC = 2, MQ̃ = 300, 400, 500 GeV, mπ̃ = 150 GeV and Mσ̃ = 500 GeV. (3) gTC = 2,

MQ̃ = 300 GeV, mπ̃ = 150 GeV and Mσ̃ = 400, 500, 700 GeV. (4) gTC = 2, MQ̃ = 300 GeV,
mπ̃ = 150, 250, 350 GeV and Mσ̃ = 500 GeV.

3.2 The Nearly Conformal Limit

As we saw in the introductory section, spontaneous symmetry breaking requires negative (quadratic)
µ-terms. There is however an alternative interpretation of the Higgs Mechanism. In such a theory,
the QCD Lagrangian possess a so-called conformal symmetry, which is exact in the chiral limit
(mq → 0), and which forbids µ-terms. The theory behind these statements are beyond the level of
this thesis, here we will simply consider it to be a limit where µS,H � mπ̃.

3.2.1 A Common Origin of the Higgs and Technisigma VEV

In the limit µS,H � mπ̃, the expressions in equation 38 simplify to:{
v2 =

λm2
π̃

λTCλH−λ2

u2 =
λHm

2
π̃

λTCλH−λ2

. (60)

where m2
π̃ in both expressions is proportional to the technifermion condensate, as shown in equa-

tion 37. Hence, according to this model, the higgs and the technisigma VEV:s have a common
origin, the technifermion condensate.
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Figure 4: The coupling constant λ as a function of the mixing angle sin θ. The dashed-dotted
(red), solid (green) and dashed (blue) lines in each plot correspond to the variation of one

parameter at a time: (1) gTC = 1, 1.5, 2, MQ̃ = 300 GeV and Mσ̃ = 500 GeV. (2) gTC = 2,

MQ̃ = 300, 400, 500 GeV and Mσ̃ = 500 GeV. (3) gTC = 2, MQ̃ = 300 GeV and
Mσ̃ = 400, 500, 700 GeV.

By introducing ḡTC = gTC

∣∣∣〈 ¯̃
QQ̃
〉∣∣∣, β = λTCλH −λ2 and ξλ = |λ|, the VEV:s can be re-expressed

as:

u2 =
λHm

2
π̃

β
=
λH ḡTC
uβ

⇔ u =

(
λH
β

)1/3

ḡ
1/3
TC

v2 =
λm2

π̃

β
=
λḡTC

uβ
=
λḡTCβ

1/3

ḡ
1/3
TCλ

1/3
H β

⇔ v =

(
ξλ

λH

)1/2(
λH
β

)1/3

ḡ
1/3
TC (61)

where the positive value of λ is ensured by defining ξ as sgn(M2
σ̃ − 3m2

π̃).

Hence, the VEVs are related accordingly:

u = v

(
λH
ξλ

)1/2

, (62)

and the coupling constant can be expressed as:

ḡ
1/3
TC = v

(
λH
ξλ

)1/2(
β

λH

)1/3

⇔ ḡTC = v3

(
λHλTC

λ
− λ
)(

λH
ξλ

)1/2

starting from the expression for v from equation 61.
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Figure 5: The coupling constant λH as a function of the mixing angle sin θ. The dashed-dotted
(red), solid (green) and dashed (blue) lines in the plot corresponding to the variation of the

technisigma mass: Mσ̃ = 400, 500, 700 GeV.

3.2.2 The Higgs and Technisigma Masses

The alteration of the h- and σ̃ masses in the nearly-conformal limit, is found by re-expressing the
original mass matrix of equation 40 (gauge eigenbasis), using equation 60 (top) and 62, and yields:

M =

(
3m2

π̃ + 2λv2 −2v2
√
ξλλH

−2v2
√
ξλλH 2λHv

2

)
(63)

where the masses are found from diagonalizing said mass matrix:

=⇒ λm =
1

2

[
m2

11 +m2
22 ±

√
4m2

12m
2
21 + (m2

11 −m2
22)2

]
=

1

2
v2

3
m2
π̃

v2
+ 2λ+ 2λH ±

√(
3
m2
π̃

v2
+ 2λ− 2λH

)2

+ 16λλH


or by simply re-expressing the eigenvalues of equation 41, right away.

3.2.3 The Mixing Angle

The expression for the mixing angle in the nearly-conformal limit is found by re-expressing equation
49 (mass eigenbasis), using equation 60 (top) and 62:

tan 2θ =
4v2
√
ξλλH

3m2
π̃ + 2λv2 − 2λHv2

.

or, equivalently:

sin θ = sin

[
1

2
arctan

(
4v2
√
ξλλH

3m2
π̃ + 2λv2 − 2λHv2

)]
. (64)
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3.2.4 The Parameter Space

We may once again re-express the scalar self-couplings in terms of the technipion- technisigma and
Higgs mass:

λ =
3m2

π̃(M2
h +M2

σ̃)−M2
hM

2
σ̃ − 9m4

π

6v2m2
π̃

, (65)

λTC =
λ

λH

(
λ+

m2
π̃

v2

)
, λH =

M2
hM

2
σ̃

6v2m2
π̃

, (66)

where the techniquark mass is implicitly included via the relation to λH . Since the mass of the
Higgs is known, there are only three parameters in the nearly conformal limit, mπ̃, Mσ̃ and MQ̃.
The scalar self-couplings, the mixing angle of equation 64 and the technisigma VEV, are plotted
as functions of the technisigma mass, for a variation of technipion masses, as shown in figure 6.
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Figure 6: The mixing angle, scalar self-couplings and technisigma VEV, plotted as functions of
the technisigma mass, for a variation of technipion masses. The dashed-dotted (red), solid (green)

and dashed (blue) lines in each plot correspond to mπ̃ = 150,250 and 350 GeV, respectively.

3.3 The PT-parameters in the scenario of no scalar contribution

The corrections to the vacuum polarization functions of equation 34 may be re-divided into of
scalar and non-scalar contributions:

δΠXY (q2) = δΠsc
XY (q2) + Ππ̃

XY (q2,m2
π̃) + ΠQ̃

XY (q2,M2
Q̃

), (67)

where the scalar contribution is given by:

δΠsc
XY (q2) = Πσ̃

XY (q2,M2
σ̃) + Πh

XY (q2,M2
h)−ΠSM,h

XY (q2,M2
h). (68)
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It so happens that the scalar contribution can be expressed solely in terms of ΠSM,h
XY ; the Higgs-

and technisigma gauge interactions are related via:

Πσ̃
XY (q2,M2

σ̃) =
s2
θ

c2θ
Πh
XY (q2,M2

h) = s2
θΠ

SM,h
XY (q2,M2

h),

as seen from comparing their Lagrangians (equation 55 and 56), and by using that the modified
Higgs contribution is equal to the SM result when multiplied with cθ:

Πh
XY (q2,M2

h) = cθΠ
SM,h
XY (q2,M2

h),

Hence the scalar contribution of equation 68 can be rewritten as:

δΠsc
XY (q2) = s2

θΠ
SM,h
XY (q2,M2

σ̃)− s2
θΠ

SM,h
XY (q2,M2

h) (69)

That is, the scalar contribution is zero in the no-mixing limit, as well as in the case of degenerate
Higgs and Technisigma masses. This is the scenario which will be considered in the analytical
calculations in this thesis. This section begins with producing a list of integrals needed for the
loop calculations, continues with evaluating the contributions from non-scalar particles, and finishes
with calculating the corresponding PT-parameters.

3.3.1 List of Integrals

As will become apparent in the following section, all loop contributions considered in this thesis
may be re-expressed in terms of two common integrals:

B0(q2,m2
1,m

2
2) =

∫
1

D1D2
, A0(m2) =

∫
1

D
, (70)

where D1 = k2 −m2
1 and D2 = (k − q)2 −m2

2 are the two loop propagators. Note how A0(m2)
represent both A0(m2

1) and A0(m2
2). The denominator D = k2 −m2 can correspond to both D1

and D2, using m = m1, or m = m2 with the variable substitution k = k + q, respectively.

The loop contributions considered in this thesis, belong to the special case where the two prop-
agators have degenerate masses, m1 = m2 = m. This section will however, to a start, treat the
general case m1 6= m2. The integrals A0 and B0, are pre-evaluated in this section, in order to
provide a list of integrals to refer back to when the actual loop calculations begin. This section
also includes how to re-express the commonly occuring integrals

Bµ =

∫
kµ

D1D2
, Bµν =

∫
kµkν

D1D2
(71)

in terms of A0 and B0. For clarity, definitions are presented in boxed equations, while the final
form of the integrals are presented after a ”therefore” sign (∴).

3.3.1.1 Evaluating B0(q2,m2
1,m

2
2) and the special case B0(q2,m2,m2)

The first integral of equation 70 is explicitly written as:

B0(q2,m2
1,m

2
2) =

∫
ddk

(2π)d
1

D1D2
=

∫
ddk

(2π)d
· 1

(k2 −m2
1 + iε)((k − q)2 −m2

2 + iε)
,

where the denominators can be transformed into exponentials using α-parameterization, which is
defined as:

1

(Ω + iε)λ
=

i−λ

Γ(λ)

∫ ∞
0

dα αλ−1eiΩα . (72)
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Using the parameterization twice - the first one with Ω = k2 −m2
1 and λ = 1, and the second one

with Ω = (k − q)2 −m2
2 and λ = 1 - the integral becomes:

B0(q2,m2
1,m

2
2) = i−2

∫ ∞
0

dαdβ

∫
ddk

(2π)d
ei(k

2−m2
1)αei((k−q)

2−m2
2)β ,

where the off-diagonal terms can be removed by a variable substitution:

k = k +
qβ

α+ β
⇒ B0(p2,m2

1,m
2
2) = i−2

∫ ∞
0

dαdβ e
iq2βα
α+β −im

2
1α−im

2
2β

∫
ddk

(2π)d
eik

2(α+β).

The integral over momentum k is simply a Gaussian integral, generally expressed as:∫
ddk

(2π)d
ei(αk

2−2qk) =
i1−d/2

(4π)d/2
e−iq

2/α 1

αd/2
(73)

with q = 0 and α = α+ β in our case. The integral is then given by:

B0(q2,m2
1,m

2
2) =

i−1−d/2

(4π)d/2

∫ ∞
0

dαdβ
1

(α+ β)d/2
e
iq2βα
α+β −im

2
1α−im

2
2β .

The final integration is performed using Feynman parameters:

α = Lx, β = Lx̄ = L(1− x)

where L ∈ (0,∞), x ∈ (0, 1)
(74)

where the shift from dαdβ to dLdx involves a Jacobian of value L:

J =
∂α∂β

∂L∂x
=

∣∣∣∣ ∂α∂x ∂β
∂x

∂α
∂L

∂β
∂L

∣∣∣∣ = L(1− x) + Lx = L.

Ergo, the integral may be rewritten as:

B0(q2,m2
1,m

2
2) =

i−1−d/2

(4π)d/2

∫ 1

0

dx

∫ ∞
0

dL L1−d/2eiL(xx̄q2−m2
1x−m

2
2x̄).

where the integral over L is performed through another α-parameterization, using α = L, A =
q2xx̄−m2

1x−m2
2x̄ and λ = 2− d/2 in (72):

B0(q2,m2
1,m

2
2) =

i1−d/2Γ(2− d/2)

(4π)d/2

∫ 1

0

dx
1

(q2xx̄−m2
1x−m2

2x̄)2−d/2 .

The integral can be re-written in a manner preferable for numerical evaluation, using that id =
(−1)2−d/2:

∴ B0(q2,m2
1,m

2
2) =

∫
ddk

(2π)d
1

D1D2
=
iΓ(2− d/2)

(4π)d/2

∫ 1

0

dx
1

(−q2xx̄+m2
1x+m2

2x̄)2−d/2 .

In the special case of equal masses, m1 = m2 = m, the integral simplifies to:

∴ B0(q2,m2,m2) =
iΓ(2− d/2)

(4π)d/2

∫ 1

0

dx
1

(−q2xx̄+m2)2−d/2 , (75)

using that x̄ = 1− x.

B0(q2,m2
1,m

2
2) and B0(q2,m2,m2) can be evaluated by returning to four dimensions, d = 4− 2ε:
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⇒ B0(q2,m2
1,m

2
2) =

iΓ(ε)

(4π)2−ε

∫ 1

0

dx
1

(−q2xx̄+m2
1x+m2

2x̄)ε

and

B0(q2,m2,m2) =
iΓ(ε)

(4π)2−ε

∫ 1

0

dx
1

(−q2xx̄+m2)ε

The evaluation of B0(q2,m2
1,m

2
2) and B0(q2,m2,m2) hence depend on the values of the momentum

and mass of the propagators. For example, if q = 0, B0(q2,m2,m2) becomes:

B0(0,m2,m2) =
iΓ(ε)

(4π)2−ε(m2)ε

which can be evaluated as a Taylor expansion. In order to obtain a dimensionless logarithm in
the expansion of this expression, and to further simplify the obtained result, one may use the
MS-scheme. The MS-scheme involves multiplying B0(q2,m2

1,m
2
2) with:

(µ2)εf(ε),

where

f(ε) =
eγEε

(4π)ε
.

The symbol γE is the Euler–Mascheroni constant (∼ 0.577), the factor (µ2)ε ensures the mass
dimension zero, and (1/4π)ε cancels the (1/4π)−ε from B0(q2,m2

1,m
2
2):

⇒ B0(0,m2,m2) =
i

(4π)2Γ(ε)eγEε

(
m2

µ2

)−ε
' i

(4π)2

(
1

ε
− ln

(
m2

µ2

))
where the expression has been Taylor expanded using Mathematica, around zero, to the first order.

The divergent term 1/ε will cancel automatically in all diagrams considered in this thesis. If
it does not, it can often be removed using re-scaling parameters (a method which is not covered
here). Divergences are not allowed in physical quantities.

3.3.1.2 Evaluating A0(m2)

The second integral of equation 70 is explicitly written as:

A0(m2) =

∫
ddk

(2π)d
1

D
=

∫
ddk

(2π)d
1

(k2 −m2 + iε)
.

The general case

An0 (m2) =

∫
ddk

(2π)d
1

Dn
=

∫
ddk

(2π)d
1

(k2 −m2 + iε)n
,

is considered in Appendix D. However, for the loop diagrams treated in this thesis, only the special
case n = 1 occurs.

A0(m2) is evaluated in a manner equivalent to the previous integral, B0(q2,m2
1,m

2
2). The de-

nominator is once again re-expressed as an exponential using α-parameterization (72), with λ = 1
and Ω = k2 −m2:

⇒ A0 = i−1

∫
ddk

(2π)d

∫ ∞
0

dα ei(k
2−m2)α,
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after which eik
2α, integrated over momentum, is identified as a Gaussian integral (73), with α = α

and q = 0. Hence, the integral may be rewritten as:

A0(m2) =
i−d/2

(4π)d/2

∫ ∞
0

dα α−d/2e−im
2α.

Since there is only one D-term in the denominator, there is no β-parameter, and hence the Feyn-
man parameterization is not required. Instead, the integral is evaluated by doing another α-
parameterization right away, using Ω = −m2 and λ = 1− d/2 in (72), producing the final result:

∴ A0(m2) =

∫
ddk

(2π)d
1

D
=

i1−dΓ(1− d/2)

(4π)d/2(−m2)1−d/2 =
(−i)Γ(1− d/2)

(4π)d/2(m2)1−d/2 .

A0(m2) is evaluated by changing from d to 4 dimensions, d = 4− 2ε, which yields:

A0(m2) =
(−i)Γ(−1 + ε)

(4π)2−ε(m2)−1+ε

Using the MS-scheme, A0(m2)→ A0(m2) · (µ2)εf(ε), yields:

⇒ A0(m2) =
(−i)m2

(4π)2
Γ(−1 + ε)

(
µ2

m2

)ε
eγEε ' im2

(4π)2

(
1

ε
+ 1− ln

(
m2

µ2

))
where the expression has been Taylor expanded in Mathematica, around zero, to the first order.
Comparing with the result for B0(0,m2,m2), we find the relation:

A0(m2) =
(
B0(0,m2,m2) + 1

)
m2

3.3.1.3 Expressing Bµ in terms of A0(m2) and B0(q2,m2
1,m

2
2) or the special case B0(q2,m2,m2)

The explicit form of Bµ is:

Bµ =

∫
ddk

(2π)d
kµ

D1D2
=

∫
ddk

(2π)d
kµ

(k2 −m2
1 + iε)((k − q)2 −m2

2 + iε)
,

which is an easily solved integral after turning the numerator into a scalar, i.e. after multiplying
the numerator by qµ. This multiplication may be performed by identifying that the integral is
equal to a function which must contain a vector. The only choice of vector is the momentum q,
since mass is a scalar, hence:

Bµ =

∫
ddk

(2π)d
kµ

D1D2
= qµB1(q2,m2

1,m
2
2). (76)

Now both sides may be multiplied with qµ:

qµB
µ =

∫
ddk

(2π)d
kq

D1D2
= q2B1(q2,m2

1,m
2
2),

where the scalar integral is easily simplified by expressing the numerator in terms of D1 and D2:

kq =
1

2
(D1 −D2 + q2 −m2

2 +m2
1) (77)

⇒ qµB
µ =

∫
ddk

(2π)d
kq

D1D2
=

1

2

∫
ddk

(2π)d

(
1

D2
− 1

D1
+

q2

D1D2
− m2

2

D1D2
+

m2
1

D1D2

)
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=
1

2

(
A(m2

1)−A(m2
2) + (q2 −m2

2 +m2
1)B(q2,m2

1,m
2
2)
)

= q2B1(q2,m2
1,m

2
2)

⇔ ∴ B1(q2,m2
1,m

2
2) = qνB

µ/q2 =
1

2q2

(
A(m2

1)−A(m2
2) + (q2 −m2

2 +m2
1)B0(q2,m2

1,m
2
2)
)
. (78)

where B1 is inserted into (76) for the final result. In the equal masses scenario, the result simplifies
to:

B1(q2,m2,m2) =
B0(q2,m2,m2)

2

⇔ ∴ Bµ =
qµ

2
B0(q2,m2,m2). (79)

3.3.1.4 Expressing Bµν in terms of A0 and B0

The explicit form of Bµν is given by:

Bµν =

∫
ddk

(2π)d
kµkν

D1D2

which in accordance with the previous subsection may be re-expressed as:

Bµν =

∫
ddk

(2π)d
kµkν

D1D2
= gµνB00 + qµqνB11. (80)

The integral can be solved in two ways, either by multiplying both sides with qµ:

qµB
µν =

∫
ddk

(2π)d
(kq)kν

D1D2
= qµ(B00 + q2B11), (81)

or by multiplying both sides with gνµ:

gνµB
µν =

∫
ddk

(2π)d
k2

D1D2
= q2B11 + dB00 (82)

where d is the number of dimensions, since gνµgµν = tr(δµµ) = d. The two possible solutions
gives us two equations, (81) and (82) to solve for our two unknowns, B00 and B11. We start by
evaluating (81), where (kq) is given by equation 77:

⇒ qµB
µν =

∫
ddk

(2π)d
(kq)kν

D1D2
=

1

2

∫
ddk

(2π)d
(D1 −D2 + q2 +m2

1 −m2
2)kν

D1D2

=
1

2

∫
ddk

(2π)d

(
�
�
�7

0
kν

D1
− qν

D1︸︷︷︸
qνA0

−
�
�
�7

0
kν

D1
+

kν

D1D2︸ ︷︷ ︸
Bν=qνB1

(q2 +m2
1 −m2

2)

)

⇔ ∴ qµB
µν =

qν

2

[
−A0(m2

1)− (q2 +m2
1 −m2

2)B1(q2,m2
1,m

2
2)
]

= qµ(B00 + q2B11) (83)

where the variable substitution k = k − q was used on the first term kν/D2. The integral Aν =
kν/D1 is zero since:

Aν =

∫
ddk

(2π)d
kν

D1
= qνA1
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⇔ qνA
ν =

∫
ddk

(2π)d
kq

D1
= −1

2

∫
ddk

(2π)d

(
���
0

1 − D2

D1
+

1

D1︸︷︷︸
A0(m2

1)

(q2 +m2
1 −m2

2)

)
= 0 = q2A1

using that∫
ddk

(2π)d
D2

D1
=

∫
ddk

(2π)d
k2 −���*

0
2kq + q2 −m2

2

D1
=

∫
ddk

(2π)d

(
���
0

1 +
q2 −m2

2 +m2
1

D1

)

= A(m2
1)
[
q2 +m2

1 −m2
2

]
.

The 1 is removed by using the fact that the integral of any constant in dimensional regularization
is equal to zero.

The second equation for determining B00 and B11 is obtained from (82):

∴ gνµB
µν =

∫
ddk

(2π)d
k2

D1D2
=

∫
ddk

(2π)d

(
1

D2
+

m2
1

D1D2

)
= A0(m2

2) +m2
1B0(q2,m2

1,m
2
2) = q2B11 + dB00. (84)

With (83) and (84), we now have two equations for solving for B00 and B11 via Gaussian elimina-
tion. In the degenerate mass scenario, the equations simplify to:{

qµB
µν = qν

2

[
−A0(m2)− q2B1(q2,m2,m2)

]
= qµ(B00 + q2B11)

gνµB
µν = A0(m2) +m2B0(q2,m2

1,m
2
2) = q2B11 + dB00,

(85)

where the Gaussian elimination yields:

B11(q2,m2,m2) =
1

18q2
(q2 − 6m2) +

1

3q2
A0(m2) +

1

3q2
(q2 −m2)B0(q2,m2,m2)

B00(q2,m2,m2) = − 1

18
(q2 − 6m2) +

1

6
A0(m2)− 1

12
(q2 − 4m2)B0(q2,m2,m2) (86)

The expression for B11 and B00 are then inserted into equation 80, for the final result of Bµν .

In equation 86, we used that the divergent part4 of B00 (for equal masses, taken from literature)
is:

div(B00) = −1

4

(
1

3
q2 −m2

1 −m2
2

)
⇒ dB00 = (4− 2ε)B00 = 4B00 +

1

6

(
q2 − 6m2

)
.

4The divergent part is the expression times 1/ε in the Taylor expansion, i.e. m2 for A0(q2), or 1 for B0(0).
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3.3.2 Loop evaluations
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Figure 7: Self-energy contributions from techniquarks and technipions with W-legs.
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Figure 8: Self-energy contributions from techniquarks and technipions with Z- and γ legs.

3.3.2.1 The Technifermion Contribution

The self-energy contribution from technifermions, comes from the left images of figure 7 and 8.
Such a two-propagator fermion loop is given by:

Πµν
ferm = bXY

∫
d4k

(2π)4
(iγνkj)

i(�k +m)ji
k2 −m2 + iε

(iγµil)
i((�k − �q) +m)lk

(k − q)2 −m2 + iε

= bXY

∫
d4k

(2π)4

tr(γν(�k +m)γµ((�k − �q) +m))

D1D2
(87)

where (iγµ) comes from the vertices, and where bXY denotes the rest of the vertex factor, unique
to each diagram:

bγγ = e2q2
f , bγZ = e2q2

f

cw
sw

bZZ = e2q2
f

c2w
s2
w

, bWW =
e2

2s2
w

.

The vertex factors can be read straight off the Lagrangian in equation 53 (adding a iγµ-factor),
and are also verified using the Mathematica program FeynArts. The subscript w denotes the
Weinberg angle and �k = γαkα. The technifermion charge for zero hypercharge is given by
Q = T3 + YQ/2 = T3 = ±1/2.

Continuing with the loop evaluation, the trace in equation 87, may be simplified to:

tr(γν(γαkα +m)γµ((γβkβ − γσqσ) +m)) = tr(γνγαγµγβ)kαkβ − tr(γνγαγµγσ)kαqσ
+m2tr(γνγµ) = 4(2kνkµ − gνµk2)− 4(kνqµ − gνµkq + kµqν) + 4gνµm2

using that the trace of any odd number of gamma matrices is equal to zero, and that tr(γνγαγµγβ) =
4(gναgµβ − gνµgαβ + gνβgαµ). Hence, the integral becomes (switching to d-dimensions):

Πµν
ferm = 4e2q2

f

∫
ddk

(2π)d
· g

µν(m2 − k2 + kq) + 2kνkµ − kνqµ − kµqν
D1D2

= 4e2q2
f

∫
ddk

(2π)d

[
gµν

(
− ��D1

��D1D2︸ ︷︷ ︸
A0

+qµ
kµ

D1D2︸ ︷︷ ︸
Bµ

)
+ 2

kνkµ

D1D2︸ ︷︷ ︸
Bµν

−qµ kν

D1D2︸ ︷︷ ︸
Bν

−qν kµ

D1D2︸ ︷︷ ︸
Bµ

]

where Bµ and Bµν can be re-expressed in terms of A0 and B0, using equation 79 and 80:
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⇒ ∴ Πµν
ferm = 4e2q2

f

[
gµν

(
−A0 + q2B0

2
+ 2B00

)
+ qµqν

(
2B11 −B0

)]
(88)

where B00 and B11 are defined in equation 86. We now wish to obtain the scalar expression, Πferm,
using the gauge invariance:

Πµν
ferm =

(
gµν − qµqν

q2

)
Πferm. (89)

By re-writing the expression in (88):

Πµν
ferm = gµν

[
−A0 + q2B0

2
+ 2B00

]
− qµqν

q2

[
q2B0 − 2q2B11

]
,

we see that the two brackets must be equal to satisfy (89), and that both of them in fact are Πγγ :

Πferm = −A0 + q2B0

2
+ 2B00 = q2B0 − 2q2B11

⇔ Πferm =
1

3

(
−2A0 −

1

3
q2 + 2m2

σ̃ +B0(q2 + 2m2
Q̃

)

)
≡ 1

3
FQ̃ (90)

where 1/3 has been taken out of the expression for aesthetic reasons.

The result for all four technifermion contributions may be gathered in a general expression:

ΠQ̃
XY ∝ g2

1NTCKXY FQ̃ (91)

where g1 = e/sw, NTC = 3 (number of technicolors), and where KXY is given by:

Kγγ = s2
w, KγZ = cwsw, KZZ = c2w and KWW = 1 (92)

Normalization constants and other factors may be ignored as long as they are identical for the
techniquark- and the technipion contribution, for reasons that will become apparent when calcu-
lating the PT-parameters.

3.3.2.2 The Technipion Contribution

The technipion contribution appear as diagrams with both one and two propagators, as shown
in the middle- and right images of figure 7 and 8. The one-propagator diagrams are given by:

Πµν
XY,1 = icXY g

µν

∫
ddk

(2π)d
i

(k2 −m2)
= −cXY gµν

∫
ddk

(2π)d
i

D
= −cXY gµνA0 (93)

where i/D is the propagator for pseudoscalars (and scalars). The factor igµν has been taken out
of the vertices, obtained in FeynArts. The remaining part of the vertex factors, specific to each
diagram, is given by cXY :

cπ̃
0

WW =
e2

s2
w

, cπ̃
+,π̃−

WW =
e2

s2
w

, cπ̃
+,π̃−

ZZ =
2c2we

2

s2
w

,

cπ̃
+,π̃−

γZ =
2cwe

2

sw
and cπ̃

+,π̃−

γγ = 2e2. (94)

Before recovering the scalar version of the form factor, we must add the two different tensor
contributions, Πµν

XY = Πµν
XY,1 + Πµν

XY,2, where subscript 1 denotes the one-propagator diagrams,
and 2 denotes the two-propagator diagrams. The two-propagator diagrams are given by:
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Πµν
XY,2 = aXY

∫
ddk

(2π)d
i

(k2 −m2)

i

((k − q)2 −m2)
(2kµ − qµ)(2kν − qν)

= −aXY
∫

ddk

(2π)d

(
4
kµkν

D1D2︸ ︷︷ ︸
Bµν

−2qν
kµ

D1D2︸ ︷︷ ︸
Bµ

−2qµ
kν

D1D2︸ ︷︷ ︸
Bν

+qµqν
1

D1D2︸ ︷︷ ︸
B0

)

= −aXY 4gµνB00

since all terms involving qµqν are zero for on-shell gauge bosons, qµe
µ = qνe

ν = 0, where eµ, eν are
polarization vectors. The factor (2kµ−qµ)(2kν−qν) comes from the vertices obtained in FeynArts.
The rest of each vertex is unique for each diagram, and given by the constant a:

aπ̃
0π̃+,π̃0π̃−

WW = − e
2

s2
w

, aπ̃
+,π̃−

ZZ = −e
2c2w
s2
w

,

aπ̃
+,π̃−

γZ = −e
2cw
sw

and aπ̃
+,π̃−

γγ = −e2. (95)

Adding the two tensor contributions for each type of legs:

ΠWW = ΠXY,1

(
cπ̃

+,π̃−

WW + cπ̃
0

WW

)
+ ΠXY,2 a

π̃0π̃+,π̃0π̃−

WW

etc. yields the same expression for any type of legs, namely:

Πµν
XY,2 = Πµν

XY,1 + Πµν
XY,2 ∝ A0 − 2B00 =

2

3
A0 +

1

9
(q2 − 6m2

π̃) +
1

6
(p2 − 4m2

π̃)B0

∝ 2A0 +
1

3
q2 − 2m2

π̃ +
1

2
(p2 − 4m2

π̃)B0 ≡ Fπ̃ (96)

The general expression for the technipion contribution is therefore given by:

Ππ̃
XY ∝ g2

1KXY Fπ̃, (97)

where Fπ̃ is given in (96) and where KXY is given by the same expressions as for the techniquark
contribution, seen in (92).

3.3.3 Evaluation of the PT-parameters

The S, T, U-parameters can be evaluated using the loop contributions of equation 91 and 97. For
linear order in q2 (33), all terms are of the form

δΠ′ Q̃+π̃
XY (0) =

d

dq2

(
ΠQ̃
XY (0) + Ππ̃

XY (0)
)

=
d

dq2

[
g2

1KXY

(
3FQ̃(0) + Fπ̃(0)

)]
= g2

1KXY

(
7

2
B0 −

2

3

)
≡ g2

1KXY Σ̂ (98)

which results in the S and U parameters being zero (the T parameter is zero from the start in
linear order in q2):

αS

4s2
W c

2
W

= δΠ′ZZ(0)− c2W − s2
W

sW cW
δΠ′Zγ(0)− δΠ′γγ(0)

= g2
1Σ̂

[
KZZ −

c2W − s2
W

sW cW
KZγ −Kγγ

]
= g2

1Σ̂

[
c2w −

c2W − s2
W

sW cW
cwsw − s2

w

]
= 0, (99)

and
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αU

4s2
w

=
[
δΠ′WW (0)− c2wδΠ′ZZ(0)− 2sW cW δΠ

′
Zγ(0)− s2

W δΠ
′
γγ(0)

]

= g2
1Σ̂
[
KWW −KZZ − 2swcwKZγ − s2

wKγγ

]
= g2

1Σ̂
[
1− c4w − 2s2

wc
2
w − s4

w

]
= 0. (100)
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4 Discussion

4.1 The Gauged Linear-Sigma Model

The considered technicolor extension borrows its low-energy effective field theory from ChPT in
QCD. To my understanding, this is a commonly occuring procedure among technicolor extensions.
The assumption that the two phenomenologies would correspond perfectly is perhaps a bit naive,
but very convenient. It allow us to directly borrow the results developed for QCD, such as the
mass spectrum and the gauging and identification of symmetry groups.

What separates our extension from many other technicolor extensions, is that there is no distinction
between left- and righthanded techniquarks, which leads to degenerate masses and a spontaneously
broken symmetry. Note that the chiral symmetry of our scalar Lagrangian may be broken (and
constructed) without including a source term. Including the source term is a conscious decision,
in order to yield a common origin of the Higgs- and the technisigma VEV in the nearly conformal
limit. However, the source term is allowed under the symmetry.

Besides choosing our scalar field to be Σ = 1
2 (S + iτaPa) (which was the field commonly used

in QCD before the non-linear sigma model was introduced), and besides including the source term,
we have not made any assumptions when constructing the Lagrangian. The Lagrangian simply
consists of all allowed combinations, i.e. gauge invariant terms with mass dimension 4.

4.2 The Parameter Space

4.2.1 Before Introducing the Nearly-Conformal Limit

The parameters MQ̃, Mσ̃ and mπ̃ (figure 3, 4 and 5), are varied in a range similar to the original
article. They cannot be varied to a much greater extent assuming there being a factor 1000 dif-
ference between the confinement scales, and that the particles possess the same mass hierarchy as
in QCD. The scale may of course be larger than this. However, we are not too interested in such
scenario, since if the masses are too large, they cannot be found at the LHC anyway. Apart from
that consideration, there are, to my knowledge, no limitations apart from that the techniquark
mass should be of order ΛTC , since it is proportional to u (45), and that the technipion should be
small with respect to the confinement scale (in order to be considered a pseudo-Goldstone boson).

The variation of gTC, on the other hand, is chosen differently from the one in the original pa-
per. The original paper chose values ranging from 2 to 8 (which are values often considered in
QCD), while I chose values ranging from 1 to 2. As argued for previously, there should be no risk
for larger values of gTC than 2 for MQ̃ = 300 GeV, since it is given by MQ̃/u, where u & v ' 246
GeV.

The shape of the plots can easily be verified by equations 57, 58 and 59. For example, the
zero-crossing for subfigure 3.1 is given by (for mπ̃ = 150 GeV, Mσ̃ = 500 GeV and Mh = 126
GeV):

λTC =
(
−1502 + 5002(1− s2

θ) + 1262s2
θ

)
= 0 ⇔ sθ ' ±0.986

according to (57), which also agrees with the plot. Subfigure 3.3 looks a bit different from the
others, since the variation of the technipion mass causes the zero-crossing to shift.

The plots displays how the coupling constant λ vanishes both in the no- and the maximal hσ̃-
mixing limit, while λH and λTC only vanishes in the maximal mixing limit (for any value of Mσ̃,
MQ̃ and gTC, and for low values of mπ̃). λ and λH remains at rather constrained values for any
mixing angle, while λTC has the potential of becoming very large for low values of the hσ̃-mixing.
It becomes especially large for high values of Mσ̃, which is a rather unconstrained parameter. This
could pose a problem since field theory treats interactions as perturbations. There are no exactly
solvable interactive field theories beyond two spacetime dimensions known to man [5].

39



4.2.2 In the Nearly-Conformal Limit

The parameter space of figure 6, displays the variation of sin θ, λTC , λH , λ, u och ḡTC/v
3 as a

function of Mσ̃, for different values of mπ̃ (where Mσ̃ and mπ̃ are the only free parameters in the
nearly conformal limit). We see that λTC and λ vanishes in the no-mixing limit, while u diverges,
and λH remains unaffected.

Once again λH and λ, are rather constrained, while λTC is stretching towards the unperturbative
region, and even more so when considering larger values of Mσ̃, which is not improbable.

The no-mixing limit would be the scenario if LHC does not find any kind of deviations in the
Higgs boson properties. In such a case u � v, as shown in the bottom right image of figure 6,
which means that the energy scale of the technifermion sector is way above the electroweak scale.
In such a case, λTC is way out is the perturbative regime. Note that this does not make the
theory less probable, it just makes it uncalculable. In addition, the techniquark mass would be of
order ΛTC , since it is directly proportional to the technisigma VEV (45), while the masses of the
technipion, and the technisigma could remain at the electroweak energy scale.

A discussion whether the nearly conformal limit is a plausible limit or not, is beyond the scope of
this thesis, and will not be included.

4.3 Loop contributions

The Peskin–Takeuchi parameters were calculated in the scenario of no scalar contributions, which
occur in either the no-mixing limit, or in the case of degenerate masses of technisigma and Higgs.
Degenerate masses are not very likely, since the Technisigma is estimated to be 500 GeV or larger,
as shown in an earlier section. There is of course a possibility that the sigma does not follow the
mass hierarchy, and that it has not been discovered due to its large width. However, it does not
seem very likely.

The no-mixing limit has less reason to be ruled out. As we saw in the plots of the parameter
space, the no-mixing limit does correspond to a divergent technisigma VEV in the conformal limit,
but the found S, T, U-parameter would also be valid for negligible contributions from the scalar
sector. For u� v, we would expect minimal deviations from expected data of the Higgs (or any-
thing measurable for that matter), which is a safe assumption unless deviations are indeed found.
However, as u increases, ΛTC rapidly increases, which could infer a non-perturbative regime, even
for very small deviations from the no-mixing limit (when the mixing is exactly zero, λTC = 0). As
mentioned previously, this does not make the theory less likely, but it rules out the possibility of
calculable scalar self-interactions. The S, T, U-parameters would be valid in any case, since they
do not involve scalar self-interactions.

When it comes to a theory where the electroweak scale is not negligible in comparison (MEW ∼
80 GeV, ΛTC & 200GeV ), one should also include the V, W, X-parameters, in addition to using
the S, T, U-parameter beyond linear order in q2. However, since the no-mixing limit implies that
u � v (neglecting the possibility of degenerate masses of the Higgs and Technisigma), the linear
order S, T, U-parameters should be adequate in this case. We may also note that the calculations
are valid no matter if we are in the conformal limit or not, since the µ-terms are only involved in
(pseudo)scalar self-couplings, as apparent from the Lagrangian.

The scenario of no scalar contributions and hypercharge zero, was chosen due to its simplicity.
The scenario involved the least amount of loop diagrams, and for hypercharge zero, all contribu-
tions canceled each other. Putting the hypercharge to zero, means that the charge of the fermions
become equal to their isospin:

Q = T 3 − YQ̃/2 = T 3 = ±1

2
.
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Hence, the hypercharge changes the vertices for any diagrams involving γ legs (which involves the
techniquark charge), or Z legs (which involves the techniquark charge and the isospin), as seen
from the Lagrangian involving vector-like interactions between technifermions and gauge bosons.

The next step would have been to consider a general case involving any mixing angle, and hy-
percharge Y = 1/3, as in the Standard Model. This scenario has been covered in the original
article, and shows that the model stays within the allowed boundaries for most variations of the
parameter space. The strongest constraints appearently come from the T-parameter.

Even if the calculation is a special case scenario, it displays how the S-parameter may vanish
when using the linear sigma model. Many other technicolor extensions suffers from the S parame-
ter being a rather large constant, no matter how high the energy scale is taken [19].
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Appendices

A Group Theory Elements

The electromagnetic-, weak- and strong interactions between all known particles can be described
using three internal symmetry groups; U(1), SU(2) and SU(3). Before discovering the consequence
of this statement, it is essential to understand what a group is.

This section provides the basic features of group theory, including an introduction to Lie groups
and Lie algebras. Lie groups are of importance since all the groups of the Standard Model, U(1),
SU(2) and SU(3), are Lie groups, and Lie algebras can be used to relate groups.

A group is an algebraic structure consisting of a set G and a binary5 operation *, fulfilling four
group axioms [15]:

1. Closure. The set must be closed under the * operation: ∃∗ : ∀U1, U2 ∈ G : U1 ∗U2 = U3 ∈ G.

2. Associative. Combining three (or more) elements in the group differently will not change the
outcome: ∃∗ : ∀U1, U2, U3 ∈ G : (U1 ∗ U2) ∗ U3 = U1 ∗ (U2 ∗ U3).

3. Identity. The must exist an identity element, that does not effect another element under the
* operation: ∃e : ∀U ∈ G : U ∗ e = e ∗ U = U .

4. Inverse. Every element has an inverse, which gives the identity when combined with its
non-inverse. U−1 ∈ G : U ∗ U−1 = U−1 ∗ U = e.

For example, the set of all integer numbers form a group under addition. (Z, +) fulfills all axioms,
with the identity being zero and the inverse of U being −U .

Another example, more suited for our applications, is the general linear group GL(n). GL(n),
short for GL(n,C), is the set of non-singular linear transformations in a n-dimensional complex
space. Or, equivalently, GL(n) is the set of all nxn complex matrices with a non-zero determinant
[17]. GL(n) forms a group under matrix multiplication, and its identity element is the identity
matrix. In fact, the identity matrix is the identity element, is a property shared amoung all groups
consisting of square matrices.

U(n) is a subgroup of GL(n), with the additional condition that the nxn complex matrices are
unitary, UU† = 1. U(1), in particular, is the set of complex 1x1-matrices with absolute value 16.
The U(1) group is Abelian, i.e. commutative, since a 1x1-matrix is simply a (complex) number,
and numbers always commute. SU(n) is in its turn a subgroup of U(n):

GL(n) ⊃ U(n) ⊃ SU(n),

with the additional condition that the complex, unitary, nxn-matrices have determinant 1. The
symbol ⊃ denotes ”contains a subset”. The SU(2) and SU(3) group of the Standard Model are
non-Abelian, since matrices in general do not commute.

A.1 Lie groups

U(1), SU(2) and SU(3) are Lie groups. Consider a continuous group with one real parameter, α,
in a one-dimensional linear vector space7. A continuous group is a group where all group elements
can be obtained by a continuous variation of a real parameter [17]. For example, a continuous

5A binary operation on a set is an operation combining two elements of the set and returning another element
of the set.

6The absolute value is equal to one, since: |eiα| =
√
e−iα · eiα =

√
1 = 1.

7The definition of a linear vector space can be found in the following section ”Lie Algebras”. The definition is
not included here, since I have chosen to emphasize some other features.
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group can be the group of all rotations in a plane, where the parameter is the angle of rotation [7].
The group elements, U ∈ G, for different values of the parameter α = ξ1, ξ2, ξ3..., must satisfy the
four group axioms. For example, the identity axiom requires:

U(ξ) ∗ U(ξ−1) = U(ξ−1) ∗ U(ξ) = U(e),

and the closure axiom requires:

U(ξ1) ∗ U(ξ2) = U(ξ3) ∈ G.

Since the relation must hold for all elements of G, the parameter ξ3 can be seen as a function of
ξ1 and ξ2:

ξ3 = f(ξ1, ξ2).

If ξ3 is an analytical function of ξ1 and ξ2, and if ξ1 is an analytical function of ξ−1
1 , the group G

is a Lie group. An analytical function is a function which is locally given by a convergent power
series, hence it can be differentiated an infinite amount of times [17].

The group elements of a Lie group can be reached continuously from the identity transforma-
tion, when using a certain set of operators. Such operators are called the generators of the Lie
group. For example, the SU(2)-group of the Standard Model is generated by the three Pauli ma-
trices, while SU(3) is generated by the eight Gell-Mann matrices. The generators are found by
considering an infinitesimal transformation. Let us start out with a simple transformation of a
one-parameter Lie-group:

x→ x′ = ξx, (101)

where ξ is the parameter, and where the homogeneous linear transformation is carried out in a
one-dimensional vector space. For future purposes, x′ will be expressed as a function of ξ and x:

x′ = f(x, ξ). (102)

If the transformation ξ is chosen to be the identity transformation e, the transformation will
obviously leave the system unchanged:

x′ = f(x, e) = x. (103)

An infinitesimal transformation, i.e. a transformation varying infinitesimal from the identity, can
be expressed as da ≡ ε:

x′ = f(x, e+ dξ) = x+ dx. (104)

Expanding the expression in the lowest order in dξ, yields:

x+ dx = f(x, e) +

[
df(x, ξ)

dξ

]
ξ=e

dξ = f(x, e) +
df(x, e)

dξ
dξ, (105)

where the insertion of equation 103 gives us:

dx =
df(x, e)

dξ
dξ ≡ u(x)dξ. (106)

The infinitesimal change in x of an arbitrary function F(x) is then given by:

dF =
dF

dx
dx =

dF

dx
u(x)dξ =

[
u(x)

d

dx

]
Fdξ ≡ tFdξ

⇔ d ≡ tdξ (107)
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where the operator t ≡
[
u(x) d

dx

]
is the generator of the group.

Now, consider a continuous group G. The infinitesimal transformation of a group element U ,
is found by using equation 107:

U(e+ dξ) = U(e) + dU(e) = U(e) + tdξU(e) = (1 + tdξ)U(e). (108)

Equation 108 shows us how applying the operator (1 + dξU) on the identity element, yields a new
element U(e+ dξ). Similarly, applying the operator N times yields the expression:

U(e+Ndξ) = (1 + tdξ)NU(e), (109)

where limN→∞ gives:

U(ξ) = exp(ξata). (110)

The infinitesimal transformation of U is given by [17]:

U(ξ) = 1 + ξata +O(ξ2). (111)

A similar derivation can be made for the generators of SU(2) and SU(3). For SO(2), the three
generators are given by:

t1 = i

[
x
∂

∂x
− y ∂

∂y

]
t2 = y

∂

∂x
− x ∂

∂y

t3 = i

[
y
∂

∂x
− x ∂

∂y

]
, (112)

with a matrix representation corresponding to the three Pauli matrices. Similarly, SU(3) has 8
generators with a matrix representation corresponding to the eight Gell-Mann matrices.

The commutator of any two generators of a Lie group can be expressed as a linear combination of
its generators:

[ta, tb] = f cabtc, (113)

or, without using the summation convention:

[ta, tb] =
∑
c

f cabtc. (114)

The constants f cab are so-called structure constants. The structure constants form a certain rep-
resentation of the generators of the group, the so-called adjoint representation. The structure
constants are completely anti-symmetric. For example, exchanging the order of the lower indices,
changes the sign:

f cab = −f cba. (115)

This property can be shown easily from equation 113 by using that:

[ta, tb] = tatb − tbta = −(tbta − tatb) = −[tb, ta]. (116)

Another property of structure constants are that they satisfy the Jacobi relation:

[ta, [tb, tc]] + [tb, [tc, ta]] + [tc, [ta, tb]] = 0. (117)

Using that [tb, tc] = fdbctd etc., equation 117 may be rewritten as:(
fdbcf

e
ad + fdcaf

e
bd + fdabf

e
cd

)
te = 0, (118)
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where all coefficients must be zero since the generators are linearly independent:

fdbcf
e
ad + fdcaf

e
bd + fdabf

e
cd = 0. (119)

In fact, it can be proven that whenever the conditions of equation 115 and 119 are fulfilled, there
exist generators which satisfies the commutation relation of equation 113.

A.2 Lie Algebras

A Lie algebra is a special case of a linear algebra. In order to define a linear algebra, we must first
define the properties of a field and a linear vector space. The definition of a field does, in fact,
contain the definition of a group; a field is an algebraic structure consisting of a set A and two
binary operations, addition and multiplication, where:

1. the set forms an Abelian group under addition,

2. the set forms an Abelian group under multiplication, when excluding the additive identity
(zero),

3. and for all a, b, c ∈ A: a(b+ c) = ab+ ac, (a+ b)c = ac+ bc8.

Now that a field is defined, we may define a linear vector space. A set of elements V form a vector
space over a field F , if V forms an Abelian group under addition. Also, the elements of the field
and the set should be combined under scalar multiplication according to [16]:

1. ax1 ∈ V
2. a(bx1) = (ab)x1

3. (a+ b)x1 = ax1 + bx1

4. a(x1 + x2) = ax1 + ax2

5. 1x1 = x1

where a, b are element in F and x1, x2 elements in V . Note that the scalar multiplication used
differ from the scalar multiplication defined as the dot product of vectors.

The elements of a linear vector space V over a field F , form a linear algebra, if the elements
fulfill the following criteria under an additional binary operation:

1. The set is closed under the binary operation: x1, x2 ∈ V : x1x2 = x3 ∈ V .

2. x1, x2 ∈ V , a ∈ F : ax1x2 = x1ax2.

Consider a vector space V spanned with the linear combinations, α, β, ..., of the generators of a Lie
group. Using equation 113, we identify that the commutator [α, β] is also an element of the vector
space (since it is also a linear combination of the generators of the Lie group). If commutation is
chosen as the ”additional” binary operation, the linear algebra formed by the vector space is called
a Lie algebra.

Lie algebras are useful since two locally isomorphic9 Lie groups have the same Lie algebra. Hence,
by only considering infinitesimal rotations about the identity, we may study a single Lie algebra
instead of several Lie groups.

8The third condition might appear trivial, but that is just due to the fact that all mathematics up to university
level is built on the theory of fields. For example, solving the equation ax = bc for x by multiplying by the inverse
of a, is something which can not always be taken for granted.

9A group is locally isomorphic if it is isomorphic in the neighborhood of the identity. Isomorphism corresponds
to a one-to-one mapping between two groups, see Fraleigh for a proper definition.
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B The mixing of the Aµ- and Bµ fields

The first term in the Lagrangian ψ̄iγµDµψ will yield interaction terms with two fermion fields ψ
and one gauge field (included in the covariant derivative). It can be shown that such an interaction
term will in fact correspond to one fermion turning in to another fermion by the emission of a gauge
boson. The procedure is demonstrated below for the covariant derivative of SU(2) acting on leptons
doublets:

L̄iγµDµL =
(
ν̄L ēL

)
iγµ

[
ig2

τ i

2
W i
µ

](
νL
eL

)
= ...

= −g2

2

[
ν̄Lγ

µνLW
0
µ −
√

2ν̄Lγ
µeLW

+
µ −

√
2ēLγ

µνLW
−
µ − ēLγµeLW 0

µ

]
(120)

We may easily identify from equation 120, that the diagonal Pauli matrix yields the neutral current
processes, while two other Pauli matrices with off-diagonal entries yield charged current processes.
This result is quite intuitive, since off-diagonal entries of a 2x2-matrix causes rotations of a two-
entries column vector, while a diagonal matrix does not.

The second and third term of equation 120, correspond perfectly to the terms in the final in-
teraction Lagrangian shown in Appendix D. The first and fourth term, on the other hand, does
not appear in the final Lagrangian. They do not appear since the W 0

µ -field of SU(2) mixes with
the Bµ field of U(1). The mixing occur since the interaction Lagrangian for U(1) contains terms
identical to the first and fourth term of equation 120:

Lint = L̄iγµ
[
ig1

YL
2
Bµ

]
L = ēRiγ

µ

[
ig1

YR
2
Bµ

]
eL

=
g1

2
[YL(ν̄Lγ

µνL + ēLγ
µeL) + YR(ēRγ

µeR)]Bµ. (121)

The first two terms of equation 121 correspond to the first and fourth term of equation 120. The
mixings of the W 0

µ - and the Bµ, can be determined by using the fact that the electromagnetic field
Aµ does not interact with neutrinos. Hence we can gather the neutrino terms from equations 120
and 121, which will correspond to Zµ.(

−g1

2
YLBµ −

g2

2
W 0
µ

)
ν̄Lγ

µνL ⇒ Zµ ∝ g1YLBµ + g2W
0
µ (122)

The electromagnetic field Aµ is then the field orthogonal to the comination of Zµ:

Aµ ∝ g2Bµ − g1YLW
0
µ . (123)

When normalized, the expressions for Zµ and Aµ are:

Aµ =
g2Bµ − g1YLW

0
µ√

g2
2 + g2

1Y
2
L

(124)

Zµ =
g1YLBµ + g2W

0
µ√

g2
2 + g2

1Y
2
L

(125)

After a bit of algebra, and adding the quark interactions, we arrive at:

L =
∑
f=l,q

eQf (f̄γµf)Aµ

+
g2

cosθW

∑
f

[f̄Lγ
µfL(T 3

f −Qfsin2θW ) + f̄Rγ
µfR(−Qfsin2θW )]Zµ

+
g2√

2

∑
q,l

[(q̄+
Lγ

µq−L + l̄+Lγ
µl−L )W+

µ + h.c.]

+
g3

2

∑
q

q̄αγ
µλaαβqβG

a
µ.

where f stands for all fermions, q for all quarks and l for all leptons. The full derivation can be
found in Kane, Chapter 7 [4].
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C Yukawa interactions of the Standard Model

The interactions between fermions and the Higgs field are found through an added Yukawa term to
the Standard Model Lagrangian. The added term is (as found in Kane, p.109 [4]) for the quarks:

L = gdQ̄LHdR + guQ̄LHcuR + gdd̄RH†QL + guūRH†cQL
where the doublet fL, the doublet H† and the singlet fR, are ordered such that the Lagrangian is a
singlet. gu, gd are the Yukawa coupling constants of the up-quark and the down-quark, respectively.
Exchanging H and Hc for:

H →
(

0
v+H′√

2

)
, Hc →

(
−v−H′√

2

0

)
, (126)

yields four terms; two mass terms and two interaction terms:

L = gd
(
ū d̄

)
L

(
0

v+H′√
2

)
dR + gu

(
ū d̄

)
L

(
−v−H′√

2

0

)
uR + h.c.

= gdd̄L

(
v +H ′√

2

)
dR + guūL

(−v −H ′√
2

)
uR + gdd̄R

(
v +H ′√

2

)
dL + guūR

(−v −H ′√
2

)
uL

ψ̄RψL + ψ̄LψR = ψ̄ψ ⇒ Lint = gdd̄d

(
v +H ′√

2

)
dR + guūu

(−v −H ′√
2

)

=
gdd̄dv√

2
− guūuv√

2
+
gdd̄dH

′
√

2
− guūuH

′
√

2
.

Hence, the so-called Dirac mass of the quarks are given by md = − gdv√
2

and mu = guv√
2

, and we can

rewrite the interaction terms as:

Lint = −md

v
d̄dH ′ − mu

v
ūuH ′. (127)

The mass- and interaction terms of leptons are obtained in an equivalent manner:

L = geL̄He−R + h.c = ... =
gev√

2
ēe+

ge√
2
ēeH ′,

⇒ Lint = −me

v
ēeH ′. (128)

Note that the there is no term giving mass to the neutrinos, since it would require the inclusion
of a right-handed neutrino10. Here we may also note that the coupling strength is proportional to
the mass of the fermion gf ∝

√
2mf/v, hence the Higgs couples stronger to heavier fermions.

By comparing the quarks in equation 127 and the leptons 128, we find a general expression for the
interaction terms of fermions:

Lint = −mf

v
f̄fH ′. (129)

10The right-handed neutrino is not included since we do not know whether it exists. It only interacts via gravity.
It cannot interact via the strong- or electromagnetic force (it possesses neither charge nor colour charge), nor may
interact weakly since it is right-handed. However, it is known from neutrino oscillations that neutrinos must possess
mass.
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D The general scenario An

The integral

An =

∫
ddk

(2π)d
1

Dn
=

∫
ddk

(2π)d
1

(k2 −m2 + iε)n
,

is evaluated in a manner very similar to the integral B0 of section 3.3.1.1. The denominator is once
again re-expressed as an exponential using α-parameterization (72), with λ = n and Ω = k2 −m2:

⇒ An =
i−n

Γ(n)

∫
ddk

(2π)d

∫ ∞
0

dα αn−1ei(k
2−m2)α,

after which eik
2α, integrated over momentum, is identified as a Gaussian integral (73), with α = α

and q = 0. Hence, the integral may be rewritten as:

An =
i1−n−d/2

(4π)d/2Γ(n)

∫ ∞
0

dα αn−1−d/2e−im
2α.

Since there was only one term in the denominator, there is no β-parameter, and hence the Feyn-
man parameterization is not required. Instead, the integral is evaluated by doing another α-
parameterization right away, using Ω = −m2 and λ = n− d/2 in (72), producing the final result:

∴ An =

∫
ddk

(2π)d
1

Dn
=

i1−dΓ(n− d/2)

(4π)d/2Γ(n)(−m2)n−d/2
=

i(−1)nΓ(n− d/2)

(4π)d/2Γ(n)(m2)2−d/2 .

using that (−m2)n−d/2 = (−1)ni−d(m2)n−d/2.
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