We gratefully acknowledge support from
the Simons Foundation
and member institutions
Full-text links:


Current browse context:


References & Citations


(what is this?)
CiteULike logo BibSonomy logo Mendeley logo Facebook logo LinkedIn logo del.icio.us logo Digg logo Reddit logo ScienceWISE logo

High Energy Physics - Phenomenology

Title: Higgs phenomenology in the Stealth Doublet Model

Abstract: We analyze a model for the Higgs sector with two scalar doublets and a softly broken $Z_2$ symmetry. One of the doublets breaks the electroweak symmetry and has tree-level Yukawa couplings to fermions. The other doublet has no vacuum expectation value and no tree-level couplings to fermions. Because the $Z_2$ parity is broken the two doublets can mix, which leads to a distinct and novel phenomenology. This Stealth Doublet Model can be seen as a generalization of the Inert Doublet Model with a broken $Z_2$ symmetry. We outline the model and present constraints from theory, electroweak precision tests and collider searches, including the recent observation of a Higgs boson at the LHC. The CP-odd scalar $A$ and the charged scalar $H^\pm$ couple to fermions at one-loop level. We compute the decays of $A$ and $H^\pm$ and in particular the one-loop decays $A \to f \bar{f}$, $H^\pm \to f \bar{f}^\prime $, $H^\pm \to W^\pm Z $ and $H^\pm \to W^\pm \gamma$. We also describe how to calculate and renormalize such processes in our model. We find that if one of $H^\pm$ or $A$ is the lightest scalar, $H^\pm \to W^\pm \gamma$ or $ A \to b \bar{b} $ are typically their respective dominating decay channels. Otherwise, the dominating decays of $H^\pm$ and $A$ are into a scalar and a vector. Due to the absence of tree-level fermion couplings for $H^\pm$ and $A$, we consider pair production and associated production with vector bosons and scalars at the LHC. If the parameter space of the model that favors $H^\pm \to W^\pm \gamma$ is realized in Nature, we estimate that there should be a considerable amount of such events in the present LHC data.
Comments: 44 pages, 25 figures. Version 2, minor changes and references added
Subjects: High Energy Physics - Phenomenology (hep-ph)
Cite as: arXiv:1311.4367 [hep-ph]
  (or arXiv:1311.4367v2 [hep-ph] for this version)

Submission history

From: Glenn Wouda [view email]
[v1] Mon, 18 Nov 2013 13:22:05 GMT (4880kb,D)
[v2] Sat, 7 Dec 2013 08:19:47 GMT (4880kb,D)