### References & Citations

# High Energy Physics - Phenomenology

# Title: Higgs phenomenology in the Stealth Doublet Model

(Submitted on 18 Nov 2013 (v1), last revised 7 Dec 2013 (this version, v2))

Abstract: We analyze a model for the Higgs sector with two scalar doublets and a softly broken $Z_2$ symmetry. One of the doublets breaks the electroweak symmetry and has tree-level Yukawa couplings to fermions. The other doublet has no vacuum expectation value and no tree-level couplings to fermions. Because the $Z_2$ parity is broken the two doublets can mix, which leads to a distinct and novel phenomenology. This Stealth Doublet Model can be seen as a generalization of the Inert Doublet Model with a broken $Z_2$ symmetry. We outline the model and present constraints from theory, electroweak precision tests and collider searches, including the recent observation of a Higgs boson at the LHC. The CP-odd scalar $A$ and the charged scalar $H^\pm$ couple to fermions at one-loop level. We compute the decays of $A$ and $H^\pm$ and in particular the one-loop decays $A \to f \bar{f}$, $H^\pm \to f \bar{f}^\prime $, $H^\pm \to W^\pm Z $ and $H^\pm \to W^\pm \gamma$. We also describe how to calculate and renormalize such processes in our model. We find that if one of $H^\pm$ or $A$ is the lightest scalar, $H^\pm \to W^\pm \gamma$ or $ A \to b \bar{b} $ are typically their respective dominating decay channels. Otherwise, the dominating decays of $H^\pm$ and $A$ are into a scalar and a vector. Due to the absence of tree-level fermion couplings for $H^\pm$ and $A$, we consider pair production and associated production with vector bosons and scalars at the LHC. If the parameter space of the model that favors $H^\pm \to W^\pm \gamma$ is realized in Nature, we estimate that there should be a considerable amount of such events in the present LHC data.

## Submission history

From: Glenn Wouda [view email]**[v1]**Mon, 18 Nov 2013 13:22:05 GMT (4880kb,D)

**[v2]**Sat, 7 Dec 2013 08:19:47 GMT (4880kb,D)