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Abstract:

We analyze a model for the Higgs sector with two scalar doublets and a softly broken

Z2 symmetry. One of the doublets breaks the electroweak symmetry and has tree-level

Yukawa couplings to fermions. The other doublet has no vacuum expectation value and no

tree-level couplings to fermions. Because the Z2 parity is broken the two doublets can mix,

which leads to a distinct and novel phenomenology. This Stealth Doublet Model can be seen

as a generalization of the Inert Doublet Model with a broken Z2 symmetry. We outline

the model and present constraints from theory, electroweak precision tests and collider

searches, including the recent observation of a Higgs boson at the LHC. The CP-odd scalar

A and the charged scalar H± couple to fermions at one-loop level. We compute the decays

of A and H± and in particular the one-loop decays A → ff̄ , H± → ff̄ ′, H± → W±Z

and H± →W±γ. We also describe how to calculate and renormalize such processes in our

model. We find that if one of H± or A is the lightest scalar, H± → W±γ or A → bb̄ are

typically their respective dominating decay channels. Otherwise, the dominating decays of

H± and A are into a scalar and a vector. Due to the absence of tree-level fermion couplings

for H± and A, we consider pair production and associated production with vector bosons

and scalars at the LHC. If the parameter space of the model that favors H± → W±γ is

realized in Nature, we estimate that there should be a considerable amount of such events

in the present LHC data.
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1 Introduction

The ATLAS [1] and CMS [2, 3] experiments at the Large Hadron Collider (LHC) have

after a long history of searches discovered a Higgs boson. By all accounts the properties

of the observed particle agree very well with what is expected of a Standard Model (SM)

Higgs boson (see e.g. [4–7] for more recent data), but it will require much work to ascertain

whether the SM Higgs doublet is all there is, or if an extended Higgs sector exists. There

are some, although not quite significant, hints of an enhanced signal strength in H → γγ

from ATLAS, but CMS sees no such an effect. It is important to now probe and investigate

the Higgs sector in detail to understand the observations and what can be expected.

Much work has been dedicated to studying some standard scenarios for the electroweak

symmetry breaking sector. Among these scenarios are the SM, the Minimal Supersym-

metric Standard Model (MSSM), and general CP-conserving two-Higgs doublet models

(2HDMs). For the latter models one often imposes a, possibly softly broken, Z2 symme-

try to prevent the occurrence of large flavor-changing neutral currents (FCNCs). General

2HDMs have been recently reviewed in Ref. [8]. Except for the SM, these models predict

a set of additional Higgs bosons, each of which has characteristic production and decay

channels for a given set of parameters.

In general models with two Higgs doublets there are two CP-even neutral Higgs bosons,

h andH, which have the same couplings to fermions and gauge bosons (up to mixing angles)

as the SM Higgs. Their decay channels are the same as for the SM Higgs plus possible decays

to lighter Higgs bosons. Of course their branching ratios can be very different because of

different coupling strengths and different open decay channels. There is additionally a

CP-odd neutral Higgs boson A, which mainly decays to the heaviest possible fermions,

A→ bb̄ or tt̄, or to a Higgs-vector boson pair, A→ hZ, H±W∓. Finally, there is a charged

Higgs boson H±, which depending on its mass decays mainly as H± → τν, cs or tb, or as

H± → hW± or H± → AW±.

An alternative scenario is presented by the Inert Doublet Model (IDM) [9–11], where

there is a SM-like Higgs boson, but in addition there is another doublet that is odd un-

der a discrete Z2 symmetry. Making all other SM particles even under this symmetry

and demanding that the Lagrangian is Z2 symmetric, the scalars from the other doublet

become fermiophobic and do not couple to fermions. Thus, if the Z2 symmetry is exact

the lightest scalar from this doublet is stable, providing a possible dark matter candidate

(see e.g. [12, 13] for constraints on the IDM from dark matter). This makes for a very

different phenomenology, so that if an alternative scenario such as the IDM or some other

non-standard model is realized in Nature, the common searches may prove inadequate.

The Stealth Doublet Model (SDM) studied in this paper was recently proposed in

Ref. [14]. It can be seen as a generalization of the IDM, but with the Z2 symmetry softly

broken in the scalar potential. This means that, in general, there is no stable scalar particle,

but instead there are now two particles, h and H, that can play the role of the Higgs boson

observed at LHC. In [14] we showed that this model can describe the observations of ATLAS

and CMS very well. In this paper we will study the model in more detail, and we will in

particular study some of the properties of the charged scalar H± and the CP-odd scalar A.
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As in the IDM, the A and H± have no tree-level couplings to fermions, and must

therefore be produced and decay in different channels than in the standard scenarios.

However, contrary to the IDM, because of the softly broken Z2 symmetry, couplings to

fermions are now generated at the one-loop level. The usual decay channels of the A

and H± bosons into fermions are therefore loop suppressed in our model. Consequently,

model-dependent constraints do not always apply, and A and H± can be lighter in our

model than in standard scenarios. For example, the main decay of the charged Higgs is

typically H± → W±γ, provided that H± is the lightest scalar. Another example is that

the production of the CP-odd Higgs A through gluon-gluon fusion is strongly suppressed,

but still the main decay channel is typically into bb̄ as in the standard scenarios.

Fermiophobic models have been discussed previously [15–21], for the case where the

lightest CP-even Higgs boson is fermiophobic. Such a Higgs boson has an increased branch-

ing ratio for h → γγ but is not produced in gg → h. In our model, instead, the lightest

CP-even Higgs boson has the same types of interactions as in standard 2HDMs, but the

A and H± are fermiophobic. Fermiophobic charged Higgs bosons have recently also been

discussed in [22].

If a symmetry is only broken by dimension-two mass terms, it is said to be softly

broken, and the symmetry is then restored in the high energy limit. Such soft symmetry

breaking in the Higgs sector is discussed in [23–26]. In particular, we in this paper consider

soft breaking of the discrete Z2 symmetry as a way to parametrize our ignorance of the

symmetry breaking mechanism. This is the conventional approach in supersymmetric

(SUSY) models with soft SUSY breaking terms in the Lagrangian. For an explicit example

of a UV complete model with composite Higgs bosons that leads to a similar type of 2HDM

that we are considering here, see [27].

As already mentioned, a Z2 symmetry is usually imposed on 2HDMs in order to not

run into dangerous FCNCs. One possibility is to arrange the symmetry such that only one

of the doublets couples to fermions. This is known as a Type-I Yukawa sector, and our

model is an example of such a Yukawa sector. An additional motivation for considering

Type-I models is that recent work in string theory [28] seems to imply that they are

generic in heterotic string theories, where selection rules forbid additional Higgs doublets

from coupling to fermions. Type-I models by definition have an exact Z2 symmetry in the

Yukawa sector. As a consequence, if the symmetry is broken softly in the Higgs potential,

then no dangerous FCNCs are generated at tree-level, as the symmetry is restored at high

energies. This also applies to our model, where new sources of FCNCs only appear at the

two-loop level.

The organization of this paper is as follows: in section 2 we discuss the definition of

the model and derive masses and couplings. In particular, we discuss the parametrization

of the soft Z2 breaking and the free parameters of the model. We then consider constraints

on the model from theoretical considerations and electroweak precision tests (EWPT) in

section 3. The recently observed Higgs boson at the LHC is discussed in the context of our

model in section 4. Decays of the scalar particles are discussed in section 5. Finally, we

briefly discuss the collider phenomenology of the charged scalar and the CP-odd scalar in

section 6. Some more technical matters are relegated to the appendices.
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2 The Stealth Doublet Model

In this section we will analyze the scalar potential of the model, derive the mass eigenstates,

and consider the free parameters and the constraints put on them from the requirement

that the Z2 symmetry is softly broken. We will in the following refer to the model as the

Stealth Doublet Model (SDM). The model has previously been presented in [14] and in the

conference proceedings [29].

2.1 The scalar potential

We introduce two SU(2)L-doublet, hypercharge Y = 1, complex scalar fields Φ1,2, which

may be written in terms of their component fields as

Φ1,2 =

(
ϕ+

1,2

ϕ1,2

)
, (2.1)

or in components [Φ1,2]+ = ϕ+
1,2 and [Φ1,2]0 = ϕ1,2. We then consider the most general

gauge invariant and renormalizable scalar potential,

V [Φ1,Φ2] = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 − [m2
12Φ†1Φ2 + h.c.]

+
1

2
λ1(Φ†1Φ1)2 +

1

2
λ2(Φ†2Φ2)2 + λ3(Φ†1Φ1)(Φ†2Φ2) + λ4(Φ†1Φ2)(Φ†2Φ1)

+

{
1

2
λ5(Φ†1Φ2)2 +

[
λ6(Φ†1Φ1) + λ7(Φ†2Φ2)

]
Φ†1Φ2 + h.c.

}
, (2.2)

where all parameters are real except λ5,6,7 andm2
12, which may be complex. In this paper we

are only concerned with CP-conserving models and will from now on assume all couplings

to be real.

There is a priori no difference between the two fields Φ1 and Φ2 in the potential (2.2),

which is invariant under global U(2) transformations of the two doublets, Φa → UabΦb with

U ∈ U(2). We may define a basis for the doublets in terms of their vacuum expectation

values (vevs) as

〈Φ1〉 =

(
0

v1

)
(2.3)

〈Φ2〉 =

(
0

v2 eiξ

)
, (2.4)

where v2 = v2
1 +v2

2 ≈ (246 GeV)2 is the total vev, and where ξ is a possible phase that could

allow spontaneous CP breaking, which we therefore set to zero. A U(2) transformation may

then be seen as a change of basis, where the total vev is rotated between the doublets. The

traditional parameter tanβ = v2/v1, which is a physical parameter in the MSSM at tree-

level, does therefore not in general have a physical meaning. It is only after specifying the

structure of the Yukawa couplings to fermions that a basis is singled out as the physical

basis. A particular choice of basis is v2 = 0, i.e., the vacuum expectation value resides

completely in Φ1. This is known as the Higgs basis in the literature, and our model is a

physical realization of this basis (see [8, 24, 26] for clear discussions of basis changes and
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the Higgs basis). In this basis there is naturally no tanβ parameter, and we shall not use

it.

The potential (2.2) explicitly breaks the Z2 symmetry

Φ1 → Φ1 (2.5)

Φ2 → −Φ2 (2.6)

through the dimension-two operator Φ†1Φ2+h.c. with coupling m2
12 and the dimension-four

operators (Φ†1Φ1)(Φ†1Φ2)+h.c. and (Φ†2Φ2)(Φ†1Φ2)+h.c. with couplings λ6 and λ7. Such a Z2

symmetry is often imposed to remove these terms. It is also imposed, with various schemes

for assignments of Z2 charges to fermions, in order to forbid large flavor-changing neutral

currents (FCNC) [30, 31], by arranging the Yukawa couplings such that each fermion only

couples to one doublet.

The dimension-four operators lead to hard breaking of the Z2 symmetry, while the

dimension-two operator breaks it softly, meaning that at very high energies, E2 � |m2
12|,

the symmetry is restored [32]. If the symmetry is broken, large FCNC may potentially

occur, but we will only encounter new sources of FCNC at the two-loop level (see section

2.4 below).

We will thus consider a physical realization of the Higgs basis where only Φ1 couples

to fermions and acquires a vev at tree-level, i.e. v1 = v ≈ 246 GeV. The minimization

conditions for electroweak symmetry breaking are simple,

m2
11 = −1

2
v2λ1, (2.7)

m2
12 =

1

2
v2λ6, (2.8)

giving no constraint on m2
22, which is therefore a free parameter in our model.

We must also consider bounds on the parameters from the requirement that the po-

tential is bounded from below [9, 33]. Stability of the potential gives rise to a number of

constraints on the parameters in the quartic part of the potential. The simplest constraints

are

λ1 > 0, λ2 > 0, λ3 > −
√
λ1λ2, λ3 + λ4 − λ5 > −

√
λ1λ2, (2.9)

where the last equation applies for λ6 6= 0 or λ7 6= 0. There are also additional constraints

that we do not list here, which can be found in references [9, 33]. In addition, one can also

constrain the parameters by requiring perturbativity of the various four-Higgs couplings

and tree-level unitarity as we will come back to below in section 3.

2.2 Physical states and mass relations

We choose Φ1 to be the doublet that gets a vev, with Z2 parity +1, and Φ2 to be the one

with zero vev and Z2 parity −1. In a CP-conserving 2HDM, there are two CP-even neutral

states h,H, one CP-odd neutral state A, and two charged states H±. We may write the
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doublets as

Φ1 =
1√
2

( √
2G+

v + φ1 + iG0

)
(2.10)

Φ2 =
1√
2

(√
2H+

φ2 + iA

)
, (2.11)

where G± and G0 are the Goldstone bosons and φ1,2 are the neutral CP-even interaction

eigenstates. The doublet Φ2 is fermiophobic, i.e., the states H±, A, and φ2 do not interact

with fermions at tree-level. Because only Φ1 acquires a vacuum expectation value, we do

not call Φ2 a “Higgs” doublet. From now on, we will also call the mass eigenstates in our

model “scalars”, not Higgs bosons, in accordance with the usual IDM nomenclature [11].

The masses for the A and H± can be found directly from the potential,

m2
A = m2

22 +
1

2
v2(λ3 + λ4 − λ5) = m2

H± −
1

2
v2(λ5 − λ4) (2.12)

m2
H± = m2

22 +
1

2
v2λ3. (2.13)

The mass matrix for the CP-even states has non-diagonal elements, and we may find the

physical mass eigenstates by diagonalizing this matrix. Taking the minimization conditions

(2.7, 2.8) into account, we have

M2 =

(
λ1v

2 λ6v
2

λ6v
2 m2

22 + λ345v
2

)
=

(
λ1v

2 λ6v
2

λ6v
2 m2

A + λ5v
2

)
, (2.14)

where λ345 = λ3 + λ4 + λ5. The matrix M2 may be diagonalized by an orthogonal matrix

V , defined by a rotation angle α, as(
m2
H 0

0 m2
h

)
= V TM2V. (2.15)

The physical CP-even states are then given by (with α defined so that mH > mh)(
H

h

)
= V T

(
φ1

φ2

)
=

(
cosα sinα

− sinα cosα

)(
φ1

φ2

)
, where − π

2
≤ α ≤ π

2
, (2.16)

or, in terms of the doublets,

H = (
√

2 Re [Φ1]0 − v) cosα+
√

2 Re [Φ2]0 sinα (2.17)

h = −(
√

2 Re [Φ1]0 − v) sinα+
√

2 Re [Φ2]0 cosα , (2.18)

where [Φ1,2]0 = ϕ1,2, c.f. eq. (2.1). The physical CP-even scalar masses can be expressed

as

m2
h = c2

αm
2
A + s2

αv
2λ1 + c2

αv
2λ5 − 2sαcαv

2λ6 (2.19)

m2
H = s2

αm
2
A + c2

αv
2λ1 + s2

αv
2λ5 + 2sαcαv

2λ6, (2.20)

– 6 –



where we defined the abbreviations sα ≡ sinα, cα ≡ cosα. Finally, we have explicit

expressions for the potential parameters λ1,3,4,5 in terms of the masses, the mixing angle

α, and the couplings λ6 and m2
22,

λ1v
2 =

m2
H +m2

h

2
+

(
m2
H −m2

h

)
2 cos 2α

− v2λ6 tan 2α (2.21)

λ3v
2 = 2

(
m2
H± −m

2
22

)
(2.22)

λ4v
2 =

m2
H +m2

h

2
−
(
m2
H −m2

h

)
2 cos 2α

+ v2λ6 tan 2α+m2
A − 2m2

H± (2.23)

λ5v
2 =

m2
H +m2

h

2
−
(
m2
H −m2

h

)
2 cos 2α

+ v2λ6 tan 2α−m2
A, (2.24)

allowing us to use the masses of the scalars as parameters of the model. The mixing angle

is given by

tan 2α =
2v2λ6

v2(λ1 − λ5)−m2
A

, (2.25)

or, in terms of the masses and λ6 only,

sin 2α =
2v2λ6

m2
H −m2

h

. (2.26)

Note that the mass relations eqs. (2.12), (2.13), (2.19) and (2.20) are invariant under

sinα → − sinα. Equivalently, from eqs. (2.21–2.24), the parameters λ1, λ3, λ4 and λ5

are invariant. This is easily seen, since as we have −π
2 ≤ α ≤ π

2 , the parameter sinα can

take any value −1 ≤ sinα ≤ 1, and cosα is always non-negative. This implies that under

sinα→ − sinα, we have sin 2α→ − sin 2α and λ6 → −λ6.

Eqs. (2.21–2.24) are not valid in the case of maximal mixing, α = ±π
4 . In this case

one instead obtains

λ1v
2 =

m2
H +m2

h

2
(2.27)

λ3v
2 = 2

(
m2
H± −m

2
22

)
(2.28)

λ4v
2 =

m2
H +m2

h

2
+m2

A − 2m2
H± (2.29)

λ5v
2 =

m2
H +m2

h

2
−m2

A. (2.30)

Eqs. (2.14) and (2.26) show that when the Z2 symmetry is exact (λ6 = 0), the mass

matrix is diagonal and there will be no mixing between h and H. This is the case in the

Inert Doublet Model; in fact all our results reduce to the IDM in the limit λ6 → 0, λ7 → 0

and sinα→ 1 or −1.1 In this sense, our model is a generalization of the IDM.

The scalar-scalar couplings depend on the potential parameters and are straightforward

to obtain from the potential. The scalar-gauge boson couplings are obtained from the

covariant derivatives and depend on the mixing angle only. The relevant three-particle

couplings are listed in Appendix A.

1Note that in this case the relation mH > mh is not valid, since no rotation is performed to diagonalize

the mass matrix M2.
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2.3 Soft breaking of the Z2 symmetry

We have so far imposed the condition of electroweak symmetry breaking and have identified

the physical scalars and their masses and mixing. We will now further constrain the

potential parameters so that the scalar potential only breaks the Z2 symmetry softly.

Naively, it may seem that because the soft Z2-breaking parameter m2
12 is proportional

to the hard breaking parameter λ6 (eq. (2.8)), hard breaking is linked to soft breaking.

However, there may exist a basis in which λ6 = λ7 = 0 while m2
12 6= 0 such that the

symmetry is broken softly. If this is the case, then the symmetry is broken softly in any

basis reached by a U(2) transformation. To find constraints on the potential parameters

for when this is the case, we employ the basis-independent methods of Davidson and Haber

[24] (see also [25, 26]). We find that in the Higgs basis the conditions are

(λ1 − λ2) [λ345(λ6 + λ7)− λ2λ6 − λ1λ7]− 2(λ6 − λ7)(λ6 + λ7)2 = 0, (2.31)

(λ1 − λ2)m2
12 + (λ6 + λ7)(m2

11 −m2
22) 6= 0. (2.32)

Eqs.(2.31) and (2.32) define the model parameter space. As explained below in section 2.5,

λ7 will be one of the free parameters of the model, and λ2 can then be chosen from the

second order equation in λ2 for a given λ7-value resulting from eq. (2.31):

λ
(±)
2 = −B

2
±
√
B2

4
− C , (2.33)

where

B = − [λ1(λ6 − λ7) + λ345(λ6 + λ7)] /λ6 (2.34)

and

C =
[
λ1λ345(λ6 + λ7)− λ2

1λ7 − 2(λ6 − λ7)(λ6 + λ7)2
]
/λ6. (2.35)

All quartic couplings λi that satisfy these relations break the Z2 symmetry softly,

although the fact that the breaking is soft is not manifest. One can visualize the model

space by solving the second order equation (2.31) for each value of λ7 and plotting the

resulting roots, see figure 1 for some examples. The behavior of the allowed points is non-

trivial. From the requirement that λ2 is real one also gets a maximum allowed value for

λ7,

λmax
7 = λ6 +

(λ1 − λ345)2

8λ6
. (2.36)

By inspection of eq. (2.31) one obtains that λ7 = λ6, λ2 = λ1 is always a solution if

m2
22 6= m2

11, from eq. (2.32).

2.4 Yukawa sector

We have up to now specified the scalar sector by considering a physical realization of the

Higgs basis where only Φ1 acquires a vev. Furthermore, we imposed a discrete Z2 symmetry

on the scalar doublets and allowed this symmetry to be broken only softly. This can be

achieved if the parameters of the scalar potential eq. (2.2) satisfy the relations (2.31) and
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Figure 1. The black line displays the allowed values of λ2 and λ7 according to eq. (2.31). The red

line corresponds to eq. (2.32); these points are not allowed.

(2.32). Now we are in a position to specify the Yukawa couplings of the model. The most

general Yukawa Lagrangian in the Higgs basis reads [26]

−LYukawa = κL0 L̄LΦ1ER + κU0 Q̄L(−iσ2Φ∗1)UR + κD0 Q̄LΦ1DR

+ ρL0 L̄LΦ2ER + ρU0 Q̄L(−iσ2Φ∗2)UR + ρD0 Q̄LΦ2DR

(2.37)

and is written in terms of the electroweak interaction eigenstates. In order to obtain the

fermion mass eigenstates, the matrices κF0 , ρ
F
0 (F = U,D,L) are transformed by a biunitary

transformation that diagonalizes κF0 using the unitary matrices V F
L , V

F
R according to

κF = V F
L κ

F
0 V

F
R =

√
2

v
MF , ρF = V F

L ρ
F
0 V

F
R , (2.38)

where MF is the diagonal mass matrix for fermions F , e.g.
[
ML

]
22

= mµ etc. The ρF

matrices are in general non-diagonal and will generate FCNC. To naturally avoid large

FCNC at tree level, we also impose (positive) Z2 parities to the fermions. This is obtained

by enforcing ρF = 0 at tree level; in other words Φ2 will not couple to fermions. Thus, our
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model is a Type-I 2HDM. The fermions will acquire mass through Yukawa couplings with

the Higgs doublet Φ1 only. The Yukawa Lagrangian in unitary gauge reads

− LYukawa =
mf

v
Ψ̄fΨf (H cosα− h sinα ) , (2.39)

for all fermions f . As will be shown in sections 5.2.1 and 5.3.1 the soft breaking terms

m2
12Φ†1Φ2 + h.c. will generate couplings between Φ2 and fermions, i.e. ρF 6= 0 at one-

loop level. Furthermore, the ρF matrices are diagonal at one-loop level. At higher orders

in perturbation theory, ρF will develop off-diagonal elements and introduce additional

sources of FCNC2. Finally we also note that the couplings of fermions to A and H±

are also governed by ρF , more specifically we have terms of the form iF̄ ρFγ5FA and

Ū
[
VCKMρ

D(1 + γ5)− ρUVCKM(1− γ5)
]
DH+.

2.5 Parameters of the model

By imposing CP conservation with only real parameters, the scalar potential has ten free

parameters. The minimization conditions (2.7, 2.8) remove m2
11 and m2

12, leaving us with

the eight parameters λ1–λ7 and m2
22. Finally, the condition for soft Z2 breaking removes

one more parameter. We may use the relations (2.21–2.24) to relate λ1, λ3, λ4, and λ5 to

the four physical scalar masses mh, mH , mA and mH± . The parameter λ6 can be used to

specify the amount of Z2 breaking, but considering eqs. (2.25, 2.26) we choose to instead

use the mixing angle α for this purpose, since in a general 2HDM sin(α − β) is invariant

under basis changes. Of the remaining λ-parameters λ2 and λ7, we note that λ2 only enters

indirectly through the stability and tree-level unitarity constraints, etc., as its only direct

effect is to set the strength of the self-interaction of the Φ2 field. As discussed above, λ2 can

then be specified if we give a value for λ7, which will be our chosen parameter. Finally, we

can relate λ3 and m2
22 using eq. (2.13). We choose λ3 as input parameter, as this parameter

enters the coupling between the CP-even states and pairs of charged scalars, see sections 4,

5.1, and Appendix A.

The seven parameters of the model that we will use are then

mh, mH , mA, mH± , sinα, λ3, λ7.

To simplify our analysis we will often make the following assumptions. To start with,

we choose λ2 = λ1 and λ7 = λ6 in order to fulfill the condition (2.31). We will also

sometimes be using a set of representative values for λ3, chosen as λ3 = 0, 2m2
H±/v

2 and

4m2
H±/v

2, corresponding to m2
22 = m2

H± , 0 and −m2
H± , respectively. In section 4 we will

vary λ3 and λ7, within theoretically allowed regions, to deduce their impact on the signal

strengths for h→ γγ and H → γγ.

3 Constraints on the SDM

Apart from the constraints discussed above, namely that we require electroweak symmetry

breaking with a vacuum bounded from below and a softly broken Z2 symmetry, we impose

2In our model, just as in the SM, we will have, e.g., hbs̄ couplings generated by a loop with twoW± bosons

with off-diagonal CKM matrix elements.
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mh = 125 GeV, mA = mH± , λ3 = 0. mh = 125 GeV, mA = mH± , λ3 = 1.

Figure 2. Contours displaying allowed regions in parameter space (to the left of/above/below the

contour lines), taking into account the theoretical constraints of stability, tree-level unitarity and

perturbativity. The black contour displays the allowed region for mH = 200 GeV, cyan mH =

300 GeV and magenta mH = 400 GeV. Here, we have used λ2 = λ1 and λ7 = λ6, which makes the

allowed regions depend only on | sinα|.

several other theoretical and experimental constraints on the model. All of the constraints

discussed in this section are included in our numerical work by using the two-Higgs doublet

model calculator 2hdmc [34, 35], where we have implemented our model as a special case.

The electroweak vacuum selected by the symmetry breaking mechanism must be stable,

which requires that the potential should be bounded from below for any values of the fields.

This leads to the conditions (2.9) and three more complicated equations. We also impose

the requirements that tree-level scattering of scalars and longitudinal W and Z bosons must

be unitary at high energies (the eigenvalues Li of the S-matrix elements obey |Li| ≤ 16π)

[36–40], and that the quartic scalar couplings are perturbative |Chihjhkh` | ≤ 4π. We will

collectively call these constraints “theoretical constraints”. Two examples of the allowed

regions in the parameter space of the model are shown, for positive sinα, in figure 2. If

we choose λ2 = λ1 and λ7 = λ6 as the solution to eqs. (2.31) and (2.32), the allowed

regions depend only on | sinα|. For other solutions of the Z2 breaking conditions, the

allowed regions depend on the sign of sinα. This is illustrated in figure 3, where we show

the allowed regions for different choices of λ7 (positive) and λ2. The allowed regions with

negative λ7 values are obtained by mirroring the regions in figure 3 with respect to the

mH±-axis through sinα = 0.

In general, one could also consider constraints from renormalization group evolution

of Yukawa couplings and masses in a similar way as in [12, 41]. Furthermore, one could

consider constraints on metastable vacua as in [42, 43]. However, this is beyond the scope

of this study.

Any model with new particles that couple to gauge bosons can potentially lead to

large contributions to the gauge boson self-energies. Such corrections are constrained by

experimental measurements, and can be parametrized by the oblique Peskin–Takeuchi S,

T , and U parameters [44], which are defined in terms of contributions to the vacuum po-
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Figure 3. Contours displaying allowed regions in parameter space (to the left of the contour lines),

taking into account the theoretical constraints of stability, tree-level unitarity and perturbativity.

The cyan contour displays the allowed region for λ7 = 0.25, black λ7 = 0.5 and magenta λ7 = 0.75.

In (a) we use λ
(+)
2 from (2.33) and in (b) λ

(−)
2 . We have here used mh = 125 GeV, mH = 300 GeV,

mA = mH± and λ3 = 0.

larizations of the electroweak gauge bosons. In particular, the T parameter is proportional

to the deviation from the SM value of the ρ parameter ρ = m2
W /(m

2
Z cos2 θW ). We do not

list the explicit expressions here, which are lengthy and involve all scalars. S, T and U do

not depend explicitly on the parameters in eq. (2.2) but only implicitly through the scalar

masses of the model, equations (2.12), (2.13) and (2.19). Additionally, the mixing angle α

only enters as s2
α and c2

α, so S, T and U do not depend on the sign of sα.

We use 2hdmc to compute the oblique parameters S, T and U and require the obtained

values of S and T to fall within the 90% C.L. ellipse of figure 10.7 in [45]. This ellipse is

given by values of constant EST (S, T ), where, approximately,

EST (S, T ) =

(
S̃ cos θ + T̃ sin θ

0.224

)2

+

(
T̃ cos θ − S̃ sin θ

0.068

)2

, (3.1)

with θ = 0.753, S̃ = S − 0.051 and T̃ = T − 0.077. In other words, figure 10.7 in [45]

shows the EST (S, T ) = 1 ellipse. We use the reference value mref
H = 125 GeV, which is to

be compared with the values 115.5 < mref
H < 127 GeV used in [45], where U was fixed at

U = 0, the expected result for models without anomalous gauge couplings. We find that

for parameter points in our model with allowed S and T values, we have 0 . U . 0.02.

In figure 4 we show some examples of regions satisfying the experimental constraints

on the S and T parameters as well as the theoretical constraints discussed above. We note

that in our model, there are two candidates for the new observed Higgs boson, H, with

mass mH ≈ 125 GeV: either the lightest CP-even scalar h, or the heaviest H. We will in

the following refer to the scenario mh = 125 GeV as “Case 1” and to mH = 125 GeV as
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mh = 125 GeV, mH = 300 GeV, sα = 0.9. mh = 75 GeV, mH = 125 GeV, sα = 0.1.

Figure 4. Some examples of allowed regions in parameter space taking into account theoretical

constraints and experimental S and T values. The x-axis shows the charged scalar mass mH±

and the y-axis the CP odd scalar mass mA. The z-axis displays the value of EST (S, T ) if it fulfills

EST ≤ 1.0, see eq. (3.1). The regions to the left of the lines in the figure are the allowed by theoretical

constraints for the different values of λ3 indicated: black (i) λ3 = 0, magenta (ii) λ3 = 2m2
H±/v2

and cyan (iii) λ3 = 4m2
H±/v2. Here, we have also used λ2 = λ1 and λ7 = λ6.

“Case 2”. In section 4 we will see that in order to accommodate the experimentally observed

signal strengths, | sinα| must be close to unity in Case 1 and small in Case 2. Motivated by

these relationships between mh,H and sinα, we present the constraints in the (mH± ,mA)-

plane from theory and S and T parameters, using sinα = 0.9 for mh = 125 GeV, and

sinα = 0.1 for mH = 125 GeV in figure 4. We use λ2 = λ1 and λ7 = λ6 in order to

satisfy eq. (2.31), see section 2.5. We also present the boundaries for different values of λ3

(corresponding to the three values m2
22 = 0 and m2

22 = ±m2
H± , according to eq. (2.22)),

shown as the regions inside the black, magenta and cyan lines in figure 4. First of all,

we see that in order to satisfy the theoretical constraints, the scalar masses can typically

not exceed ∼ 700 GeV. Secondly, as noted in [46] for 2HDMs, in order to have a small

contribution to the S and T parameters, the H± and A masses must satisfy an approximate

custodial symmetry (the two branches in the figure). If we define [46]

M2 ≡ m2
h cos2 α+m2

H sin2 α, (3.2)

then there is an approximate custodial symmetry if either mA ≈ mH± + 50 GeV when

m2
H± .M2, or mA ≈ mH± when m2

H± &M2, or 0 . mA . 700 GeV when m2
H± ≈M

2.

In models with charged scalars H±, any Feynman diagram that contains a W± also

occurs with a H±. In particular, this will affect low energy observables such as decay

widths of mesons. By considering the effects of H± and A on low energy observables, one

can indirectly constrain e.g. mH± for a given set of CH±ff̄ ′ couplings, or in other words

ρF . For a discussion of the impact of constraints from meson decays on H± in general
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Figure 5. The two additional Feynman diagrams for the process H → γγ in 2HDMs, H = h,H.

2HDMs we refer to e.g. Ref. [46]. In our model, we will assume that the sizes of the loop-

induced couplings between H± and fermions are well below current limits from such flavor

observables. In other words, indirect constraints from flavor observables do not apply to the

H± and A of our model. The only direct, model independent, constraint prior to LHC that

applies to our H± is the measurement of ΓZ , which gives the limit mH± > 39.6 GeV [47].

4 The SDM and the observed Higgs boson at the LHC

In this section, we include collider constraints in our analysis of the SDM parameter space.

This is implemented through the 2hdmc interface to HiggsBounds (version 3.8.0) [48, 49],

which includes Higgs searches at LEP, the Tevatron and the LHC (7 TeV data). We do not

include all of the very recent LHC results in the present analysis, but this will be discussed

further below. Limits on mH± and mA are not tested with HiggsBounds, since 2hdmc

only calculates tree-level branching ratios for the charged scalar H± and the CP-odd scalar

A, see section 5.2 and further below. We will refer to the recently discovered Higgs boson

as H and the SM Higgs boson as HSM.

We here mainly consider the γγ-channel, which is the most significant channel in the

discovery of H. Studies of the impact of the γγ-signal on the IDM has been studied

in e.g. [12, 13, 50, 51]. In ref. [52] constraints on general 2HDMs with a softly broken Z2

symmetry and tanβ 6= 0 are studied in the light of the new LHC data.

The ATLAS experiment has observed a small excess in the γγ signal strength compared

to the SM. Here, the signal strength µH γγ is defined as

µH γγ =

∑
k σk(pp→ H+Xk) × BR(H → γγ)∑

k σk(pp→ HSM +Xk) × BR(HSM → γγ)
, (4.1)

where H = h,H in our model, and σk are the gluon-fusion and vector boson fusion (VBF)

hadronic cross sections. The signal strength for other channels, such as µHZZ , are defined

in an analogous way. At the time of writing, ATLAS reports the value µHγγ = 1.65 ±
0.24(stat)+0.25

−0.18(syst) at a mass mH = 126.8 ± 0.2(stat) ± 0.7(syst) GeV [4]. The best fit

signal strength and mass using all decay channels are µH = 1.43 ± 0.16(stat) ± 0.14(syst)

and mH = 125.5± 0.2(stat)+0.5
−0.6(syst) GeV [53]. The CMS experiment does not report any

excess in the H → γγ channel; their best fit value is µHγγ = 0.78 ± 0.24 with a best-fit

mass of mH = 125.4± 0.5(stat)± 0.6(syst) GeV [6].
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Figure 6. The maximally obtained µhγγ ≡ µmax
hγγ , with mh = 125 GeV and mH = 300 GeV, for

parameters that satisfy all constraints from theory, collider searches with the use of HiggsBounds

version 3.8. In (b) the requirement 0.5 < µhZZ < 2.0 is added. We have plotted the points

resulting in 1.0 < µmax
hγγ < 2.0 (red) above the points resulting in 0.5 < µmax

hγγ < 1.0 (black). The

scan is described in the text.

We further consider the ZZ → 4` channel. At the mass mH = 124.3+0.6
−0.5(stat)+0.5

−0.3(syst)

GeV, ATLAS obtains a best fit signal strength µHZZ = 1.7+0.5
−0.4 [5]. The CMS experiment

obtains at mH = 125.7 GeV the signal strength µHZZ = 0.92±0.28 [7]. In the following, we

will consider signal strengths 0.5 < µHγγ , µHZZ < 2.0 (where H = h,H) to be compatible

with observation.

In our model, the signal strength µH γγ becomes

µhγγ = sin2 α
BR(h→ γγ)

BR(HSM → γγ)
, µHγγ = cos2 α

BR(H → γγ)

BR(HSM → γγ)
, (4.2)

since h couples as sinα both to quarks in the gg-fusion process and to vector boson pairs

in VBF, whereas H couples as cosα.

The matrix element for H → γγ at lowest order in 2HDMs, and in particular in our

model, has contributions from two additional Feynman diagrams compared to the SM, with

a pair of charged scalars in the loop, as shown in figure 5. These two diagrams contain the

couplings between H and H+H−

ghH+H− = −iv (−λ3 sinα+ λ7 cosα) , gHH+H− = −iv (λ3 cosα+ λ7 sinα) (4.3)

in the matrix element for the partial width ΓH→γγ . The inclusion of the charged scalars

in the loop can enhance the ΓH→γγ and BR(H → γγ) compared to the SM and therefore

also µHγγ .

In order to deduce the regions of parameter space in our model that are compatible with

the experimentally observed γγ and ZZ signal strengths and that satisfy constraints from

EWPT, theory and limits from previous collider experiments (through HiggsBounds), we

scan in the (mH± , sinα)-plane over the λ3 and λ7 parameters. For a given λ7 all solutions

to equations (2.31) and (2.32), i.e. λ2 values according to equation (2.33), are tested. The
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mh = 75 GeV and mH = 125 GeV. mh = 95 GeV and mH = 125 GeV.

Figure 7. The maximally obtained µHγγ ≡ µmax
Hγγ , for parameters that satisfy all constraints from

theory, collider searches with the use of HiggsBounds version 3.8 and the requirement 0.5 <

µHZZ < 2.0. We have plotted the points resulting in 1.0 < µmax
Hγγ < 2.0 (red) above the points

resulting in 0.5 < µmax
Hγγ < 1.0 (black). The scan is described in the text.

scan proceeds by sampling uniformly from the following intervals:

mH± ∈ [45, 300] GeV , | sinα| ∈ [0, 1] , λ3 ∈ [−5, 15] , λ7 ∈ [−10, 10]. (4.4)

We need only consider | sinα| since it can be shown that the allowed points are independent

on the sign of sinα.

In Case 1, mA is taken as mA = mH± + 50 GeV in order to fulfill the constraints from

EWPT. In Case 1 we also use mH = 300 GeV. In Case 2 we use mh = 75 or 95 GeV

with mA = mH± to fulfill EWPT constraints. The maximum signal strengths µmax
H γγ for

parameter points that satisfy all the constraints are shown in figures 6 and 7 for the two

cases respectively.

In total, we generate 5× 104 points for each (mh,mH) configuration. In Case 1, 1432

points pass all constraints and give 0.5 < µmax
hγγ < 1.0 and 286 points give 1.0 < µmax

hγγ < 2.0.

In Case 2 with mh = 75 (95) GeV, 1466 (3385) points pass all constraints and give 0.5 <

µmax
Hγγ < 1.0, and 1130 (2247) points give 1.0 < µmax

Hγγ < 2.0.

We find an allowed region for Case 1 compatible with observed signal strengths, such

that 0.7 . | sinα|. There is also a region mh/2 . mH± . 150 GeV, where the γγ signal

strength is compatible with observations. However, for such low values of | sinα|, the signal

strength for h→ ZZ is not compatible with data. (The h→ ZZ signal strength scales as

sin2 α in Case 1 as long as the decay channels into other scalars can be neglected). One

should therefore consider | sinα| ≈ 0.7 as a lower limit for the allowed parameter space.

There is also an allowed region with mH± < mh/2 for 0.8 . | sinα|. This region is not

shown in figure 6 since it is a very finely tuned region and can only be seen if one generates

more points according to (4.4). This region exists because the coupling ghH+H− can be

made small enough to make BR(h→ H+H−) negligible. For such lowmH± one might think

that the LEP constraints on mH± are violated (see section 5.2.4). However, the majority of
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the allowed points compatible with µhγγ for mH± < mh/2 have BR(H± → W±γ) > 99%

which we have assumed avoids the LEP constraints. We refer the reader to section 5.2 for

details concerning the H± decays in our model.

For Case 2, with mh = 75 GeV or mh = 95 GeV, the preferred regions are | sinα| . 0.2

or | sinα| . 0.5 respectively, both with with mh . mH± , see figure 7. For mh = 95 GeV,

an allowed region with | sinα| . 0.1 and mH/2 . mH± . mh exists with relatively high

statistics. Analogous to the previously discussed Case 1, there is also an allowed region,

with mH± < mH/2 and | sinα| . 0.2 in Case 2, which is not shown in figure 7 due to low

statistics.

We have not considered the off-shell decay channels H → H+(∗)H−∗ nor A(∗)A∗, which

are not included in the 2hdmc code. However, due to the smallness of ΓH± and ΓA, they

are not important (see sections 5.2.4 and 5.3.2).

In Case 1, we note that a conservative lower limit on mH can be obtained by using the

searches for the SM Higgs boson by the ATLAS and CMS experiments. As an example we

consider figure 12a of Ref. [5] from ATLAS. This figure shows σ(gg → HSM) ×BR(HSM →
ZZ) × BR(ZZ → 4`) as a function of mHSM

. Assuming no other decay modes of the H

boson of our model than into SM particles, we should rescale their result with cos2 α in

order to compare with our model. For sinα = 0.9, our predicted cross section is below the

present exclusion limit for mH > 200 GeV. For sinα = 0.8 we are within and below the 1σ

exclusion limit when mH & 300 GeV, still assuming no other decay modes of the H boson

than into SM particles. If decay modes that involve any of the new scalars in our model are

open, in particular the hh mode but possibly also the H±W∓ and AZ modes, then lower

mH and sinα values are not excluded. It would be interesting to further analyze our model

in the light of the very recent LHC results, e.g. by using the updated HiggsBounds [54, 55]

and the new code HiggsSignals [56].

5 Decays of the Scalars in the SDM

In this section we present the decay branching ratios and widths for the scalars in our

model. We first briefly discuss the decays of the CP-even bosons h and H followed by a

longer discussion of the decays of the charged scalar H±. Some of the discussion regarding

technical details of the H± decays is relegated to Appendices B and C. We then finish this

section by briefly discussing the decays of the A bosons, which are computed analogously

to the H± decays.

5.1 Decays of the non SM-like CP even scalar h or H

The decay modes of the h and H bosons are as in a Type-I 2HDM with tanβ = 0. In this

section, we will focus on Case 1 and Case 2, which were discussed in section 4. For the

calculations of the branching ratios of h and H, we use 2hdmc.

We first consider Case 1, where mh = 125 GeV. The decay modes of h must be SM-like

in order to reproduce the recent LHC results. This constrains the masses of the charged

scalar H± and the CP-odd A to be large enough to prohibit e.g. h→ H+H− and h→ AA,

unless the couplings are small as discussed in section 4. The heavier H boson, which can

– 17 –



H±W¡max

H+H- max

H±W¡min

50 100 150 200 250

0.02

0.05

0.10

0.20

0.50

1.00

mH+HGeVL

B
R

H+H- max

H±W¡max

H±W¡min

50 100 150 200 250

0.02

0.05

0.10

0.20

0.50

1.00

mH+HGeVL

B
R

(a) (b)

Figure 8. The branching ratios of the H boson as a function of mH± when scanning over λ3 and λ7
(see the text for details) for mH = 300 GeV (left) and mH = 200 GeV (right): maximal BR(H →
H+H−) is shown as a black dotted line, whereas BR(H → H±W∓)max and BR(H → H±W∓)min

are shown as solid and dashed magenta lines. The cyan band shows the sum BR(H → H±X).

be as light as ∼ 200 GeV according to the discussion in section 4, can decay into H±W∓,

H+H−, AA and AZ if any of these channels are open. In this case they will be potential

production channels for charged scalars and CP-odd scalars.

In order to investigate these decays in more detail, we have performed a scan in the

(λ3, λ7)-plane according to

− 5 ≤ λ3 ≤ 15 , −10 ≤ λ7 ≤ min { 10 , λmax
7 } , (5.1)

in steps of 50 each in λ3 and λ7 for a given (mH± , sinα) point, where λmax
7 is given by

eq. (2.36), using sinα = 0.9, mh = 125 GeV and mA = mH± + 50 GeV as well as imposing

the theoretical constraints and 0.5 < µhγγ < 2.0 and 0.5 < µhZZ < 2.0. The results are

summarized in figure 8a and figure 8b for mH = 300 and 200 GeV, respectively. From

figure 8a we see that for mH = 300 GeV the branching ratio of the H scalar into a pair

of charged scalars H+H− can be as large as 60% and H → H±W∓ can be up to 70%.

Looking at the sum of the two, we see that the branching ratio for H → H±X is substantial

for mH± . 150 GeV. Turning to the case mH = 200 GeV shown in figure 8b we see that

the decay H → H+H− can dominate completely whereas H → H±W∓ is substantial for

mH± . 120 GeV.

In Case 2, the possible decays modes of H are the same as in Case 1. However, in

order to accommodate the recent LHC results, the signal strengths must be very SM-like

and therefore puts limits on mH± and mA. The branching ratios of h in Case 2 should

then also be SM-like since no other decay channels are open.

5.2 Decays of the charged scalar H±

We now turn to the decay of the charged scalar H±. The main issue here is that below

the H± → W±S threshold, where S is the lightest of the neutral scalars, it is not known

a priori which is the largest of the partial decay widths: H± → ff̄ ′, H± →W±Z/γ (which
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proceeds at one-loop level at lowest order) or H± →W±∗S∗ → 4 or 6 fermions (which are

tree level processes, suppressed by massive propagators and multi-particle phase-space).

All loop calculations of the H± and A decays in this paper have been performed by

implementing the model in the FeynArts [57] and FormCalc [58, 59] packages with the

help of the FeynRules package [60].3 The calculations have been performed in Feynman–

’t Hooft gauge, i.e. Rξ gauge with ξ = 1, and renormalization conditions and counterterms

have been implemented in FormCalc directly as this is not included in models generated

using FeynRules. Details of the calculations are given in the rest of this section, and

details of the renormalization and the chosen on-shell renormalization scheme are given in

Appendix B.

5.2.1 H± → ff̄ ′

Due to the assigned Z2 parities of the Φ1,2 fields and the fermions, the charged scalar,

which resides solely in Φ2, does not couple to fermions at tree level. Since the CP-even

mass eigenstates are a mixture of the neutral and real components from Φ1 and Φ2 it is

possible for the charged scalar to interact with fermions through the terms m2
12Φ†1Φ2 + h.c.

in the scalar potential. Because of the mixing, the amplitudes for all such diagrams will

be proportional to sin 2α ∝ |m12| (see eqs. (2.8) and (2.26)).

3The FeynRules model can be obtained from the authors.
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Figure 9. Feynman diagrams in Rξ gauge for the effective vertex for (a): H+ → ui d̄j and (b):

H+ → L+ ν. Here, ui and di denote up- and down-type quarks of family i. L+ denotes a positively

charged lepton; e+, µ+, τ+ and ν the corresponding neutrino. Diagrams that contain propagators

denoted by h/H are to be counted as two diagrams: one with a h boson running in the loop and

one with a H boson instead. The effective vertices for Auiūi and AL+L− are described at one-loop

order by the same set of diagrams as in (a) and (b) but with the replacements A→ H+, W+ → Z,

G+ → G0, d̄i → ūi and ν → L−.
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There are several different ways for the charged scalar to couple to two fermions. We

start by considering the effective vertex generated by the Feynman diagrams shown in

figure 9, and given in eq. (C.2) in appendix C. Since the coupling CH±ff̄ ′ ∼ ρF is absent

at tree level and no counterterm is obtained by performing field and coupling expansions

in LYukawa, the loop-generated coupling is UV finite. This has also been verified explicitly

using the FeynArts and FormCalc implementation.

Another contribution to the matrix element MH±→ff̄ ′ comes from mixing of the

charged scalar with the longitudinal component of the W± boson or the charged Gold-

stone boson G± since we are using Rξ gauge. This contribution also arises due to the

m2
12Φ†1Φ2 + h.c. term in the scalar potential. Feynman diagrams for the H±W∓ and

H±G∓ mixing contribution to H± → ff̄ ′ are shown in figures 10 and 11.

In the present work, we follow the procedure for renormalization described in [61],

which means that no tadpole diagrams contribute and the real parts of the H±W∓ and

H±G∓ mixings are absent for on-shell charged scalars. Again we refer to Appendix B

for details. Below the hW± threshold, only the vertex-diagrams in figure 9 contribute

to ΓH±→ff̄ ′ in the present renormalization scheme. As a consequence, for charged scalar

masses below mh +mW , the width for H± → ff̄ ′ is proportional to the fermion mass mf

and vanishes when mf → 0. Above the mh + mW threshold, where the H±W∓-mixing

diagrams develops a non-zero imaginary part (which is unaffected by the renormalization

scheme, see figure 24), the width will not vanish in the limit mf → 0. We have also

verified, with our FeynArts and FormCalc implementation, that the final expression

for the partial width ΓH±→ff̄ ′ , including all contributions, is indeed UV finite.

Finally we want to emphasize that the H± → ff̄ ′ partial width is proportional to

sin2 2α and does not depend on the parameters λ2, λ3 or λ7. In our numerical calculations

we include QCD radiative corrections for final state quarks up to order α2
s, according

to eq. (14) in [34], which is based on [62–64]. We will also in the following discussion set

VCKM equal to the unit matrix.
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Figure 10. H+W− mixing contribution to H+ → ff̄ ′. The same set of diagrams exists for the

AZ mixing contribution to A → ff̄ with the replacements A → H+, W+ → Z, G+ → G0 and

f̄ ′ → f̄ . There is also the possibility to draw diagrams where the A boson mixes with a h/H boson

which in turn go into a pair of fermions, but all such diagrams vanish due to CP conservation in

the scalar sector. Diagrams that contain propagators denoted by h/H are to be counted as two

diagrams: one with a h boson running in the loop and one with a H boson instead.
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In figure 12, the partial widths ΓH±→τν and ΓH±→cs are shown. The widths are very

small, less than ∼ 1 eV. This is partially due to the small Yukawa couplings ms/v, mc/v and

mτ/v, on which all diagrams below the hW± threshold depend through the Hif̄f vertex,

Hi = h,H. Above the hW± threshold, the diagrams in figure 10, which are independent of

the Yukawa couplings, start to contribute according to the chosen renormalization scheme.

The smallness of the widths is also due to the loop suppression. In section 5.3.1, we compare

the partial width for the process A→ τ+τ− (which is analogous to H± → τν) evaluated in

our model and in a generic 2HDM in order to extract the size of the loop suppression. We

also note that the widths depend on mh and mH since diagrams with h and H propagators

interfere destructively. Furthermore, the τν and cs widths are similar in size due to the

scaling with the fermion masses in the Hif̄f vertex.

5.2.2 H± →W±Z/γ

We now discuss the decay channels H± → W±Z/γ, starting with H± → W±γ. Since

the electromagnetic current jµEM must be conserved classically, only couplings between

photons and particle–antiparticle pairs exist at tree level. This means in particular that

the coupling H±W∓γ is absent, irrespective of the underlying model giving rise to the

charged scalar H± state. However, this coupling can in general be generated at higher

orders. The Feynman diagrams that contribute to the amplitude at one-loop order in Rξ
gauge are shown in figure 13.

In principle, the diagrams in figure 14 could also contribute to longitudinally polarized

W± bosons, W±L , but in fact all vanish. This can be understood by the form of the H+H−γ
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Figure 11. H+G− mixing contribution to H+ → ff̄ ′. The last five diagrams are purely real

and vanish in on-shell renormalization schemes [61]. The same set of diagrams exists for the AG0

mixing contribution to A→ ff̄ with the replacements A→ H+, W+ → Z, G+ → G0 and f̄ ′ → f̄ .
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Figure 12. The partial widths ΓH±→τν (black) and ΓH±→cs (magenta) evaluated for mh =

125 GeV, sinα = 0.9. For the solid lines we have mH = 300 GeV, and for the dotted lines

mH = 200 GeV.

H+

W +

Γ

h�H

G+

G+

H+

W +

Γ

h�H

H+

H+

H+

W +

Γ

h�H

G+

W +

H+

W +

Γ

h�H

W +

G+

H+

W +

Γ

h�H

W +

W +

H+

W +

Γ

h�H
W +

H+

W +

Γ

h�H

H+

H+

W +

Γ

h�H

G+

Figure 13. Feynman diagrams in Rξ gauge for the H±W∓γ effective vertex at one-loop order.

Diagrams that contain propagators denoted by h/H are to be counted as two diagrams: one with

a h boson running in the loop and one with a H boson instead.

coupling, for which the Feynman rule reads

H+H−γ : ie
[
pµ
H+ − pµH−

]
, (5.2)

where the four momenta are taken to be incoming. Due to four momentum conservation at

each vertex, we obtain pµ
H+ext. − pµγ = pµ

H+int. = pµW (at the H+H−γ vertex in the diagrams

in figure 14), which contracted with the final state polarization vector εµ for the W± boson

gives

pµW εµ(σ, pW ) = 0, (5.3)
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Figure 14. Feynman diagrams in Rξ gauge that contribute to the process H± → W∓γ at one-

loop level, where the external W± boson has longitudinal polarization, W∓L . Diagrams that contain

propagators denoted by h/H are to be counted as two diagrams: one with a h boson running in the

loop and one with a H boson instead. All of these diagrams vanish due to the form of the H+H−γ

vertex, as explained in the text.

according to the gauge condition for massive spin-1 bosons, for all polarizations σ. This

demonstrates that all the diagrams in figure 14 vanish and has also been verified with our

FormCalc implementation.

Similarly, the diagrams in figure 17, which are a subset of possible diagrams for the

matrix element of H± → W±ZL, vanish by the same argument applied to the AH±W∓

coupling,

AH±W∓ : gAH±W∓
[
pµ
H± − p

µ
A

]
, (5.4)

where the four-momenta are taken to be incoming. It is important that the contributions

from AZ-mixing vanish at one-loop level in H± decays. If they did not, then we would not

have a consistent renormalization scheme (see Appendix B).

One should also add to the matrix element MH±→W±γ all the diagrams from the

H±W∓ and H±G∓ mixing previously discussed for the H± → ff̄ ′ processes, by substi-

tuting W+γ for ff̄ ′ in the diagrams depicted in the figures 10 and 11. We do not include

diagrams with external Goldstone bosons in the processes H± →W±Z/γ since we employ

the standard unitary gauge prescription for summing over the physical polarization states

of the final state W± and Z bosons,∑
σ

ε∗µ(σ, p) εν(σ, p) = −gµν +
pµpν
m2
V

, (5.5)

where V = W± or Z.

Before continuing with further H± decays, we now want to briefly compare the decay

modes calculated so far. Above the on-shell thresholdmH± > mW we find thatH± →W±γ

naturally dominates over H+ → τ+ντ / cs̄ by several orders of magnitude, as illustrated in

figure 15. (However, as will be discussed below, it is possible to tune the parameters to make

H± →W±γ become very small.) The reason for this can be found in the different couplings

appearing in the respective loop diagrams. As was discussed in the previous section, all the

diagrams that contribute to ΓH±→ff̄ ′ are proportional to the small Yukawa couplings for

mH± < mh+mW . Above the threshold this partial amplitude is more or less unchanged. In

contrast, the leading order diagrams that contribute to H± →W±γ do not depend on the
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Figure 15. The cyan band shows the maximal and minimal obtained ΓH±→Wγ by scanning

according to eq. (5.1). The dotted magenta line shows ΓH±→Wγ and the solid black shows ΓH±→τν ,

evaluated at λ3 = 2(mH±/v)2 and λ7 = λ6. The dotted black line shows ΓH±→Wγ evaluated at

λ3 = λ7 = 0 which makes the contribution from diagrams containing HiH
+H− vertices (Hi = h,H)

vanish according to (4.3).

Yukawa couplings, and thus H± → W±γ dominates over H+ → τ+ντ / cs̄. The situation

is similar to the case in the Standard Model where HSM → W+W− dominates over the

bb̄ channel if it is open. It is well known that by including the width of the W± bosons,

i.e. HSM → W+∗W−∗ → fermions, the W+∗W−∗ decay mode of the HSM dominates over

bb̄ far below the threshold; mHSM
< 2mW . As we will now show, the situation is similar

in our model, i.e. the H± → W±∗γ mode dominates over the H± → ff̄ ′ modes even for

charged scalar masses mH± < mW .

To investigate this, we include the effect of subsequent decays of the W± boson, by

considering the process H± → W±
∗
γ, using the method of “smeared mass unstable par-

ticles” [65, 66] described in Appendix D. Formally, one should consider all contributions

to the process H± → ff̄ ′γ, with a photon energetic enough to be detected. The diagrams

contributing to this process would be the same as those for H± → ff̄ ′ with an external

photon radiated off any charged particle. We do not do this here, since to be consistent, we

would then also have to include all other O(αEM) corrections to those widths, which are

needed to cancel IR divergences. This procedure will then require two-loop calculations, a

cumbersome task that will not alter the overall result regarding our H± →W±∗γ → ff̄ ′γ

calculation.

The result of the inclusion of the width of the W± boson is that, due to its broadness

and the smallness of ΓH±→τν and ΓH±→cs, the process H± →W±
∗
γ clearly dominates the

spectrum even below the threshold for H± → W±γ, as shown in figure 18 below and in

figure 15 above.

The H± → W±Z/γ widths are proportional to sin2 2α and are independent of λ2.

They do however depend on the λ3 and λ7 parameters through the H+H−h and H+H−H

vertices present in the second and seventh diagram in figure 13. In figure 15 we give the
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Figure 16. Feynman diagrams in Rξ gauge that contribute to the process H± →W∓Z at one-loop

level. Diagrams that contain propagators denoted by h/H are to be counted as two diagrams: one

diagram with a h boson running in the loop and one with a H boson instead.

partial decay width H± →W±γ for the canonical choice of λ3 = 2(mH±/v)2 with λ7 = λ6

as well as when scanning over λ3 and λ7 according to eq. (5.1). The conclusion is that

for the vast majority of parameter space, the Wγ mode dominates over the τν and cs

modes. We note that it seems possible to tune the parameters λ3 and λ7 for a given

mH± to give a very small ΓH±→W±γ . This is most likely due to cancellations between

the diagrams containing HiH
+H− vertices, Hi = h,H (which depend on λ3 and λ7, see

eq. (4.3)) with diagrams containing HiH
±W∓ vertices (which depend on gauge couplings,

see appendix A). However, we do not analyze this further here.

We now turn to the process H± →W±Z. The tree-level coupling gH±W∓Z depends on

the SU(2)L and Y representations of the different scalar multiplets in a given model, and

their vevs. In models where only SU(2)L doublet representations are present, the coupling

gH±W∓Z vanishes at tree level. This coupling can in general be generated at higher orders.

The diagrams for the process H± →W∓Z at one-loop order are the same diagrams as for

H± →W∓γ (replace γ → Z) plus the diagrams in figure 16.

At this stage, we do not include off-shell effects in the H± →W±Z decays. The reason

will become clear below in section 5.2.4 where we will see that since mh = 125 GeV or

lighter, the tree level decay H± → W±(∗)h(∗) will dominate over H± → W±Z as soon

as h can be produced on-shell in H± → W±∗h. Now, since mh = 125 GeV is below the

W±Z threshold, this will always be true. The inclusion of H± → W±∗Z∗ does not alter

this result. However, it can in principle influence the importance of the H± →W±γ mode

below the WZ threshold, as indicated in figure 18. In addition, the inclusion of off-shell

top quarks could also be important when we consider which decay mode is sub-dominant

(at the percentage level). We leave these questions for future studies.

Finally, we have checked, using the FeynArts and FormCalc implementation of our
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Figure 17. Feynman diagrams in Rξ gauge that contribute to the process H± →W∓Z at one-loop

level, where the external Z boson has longitudinal polarization, ZL. There is also the possibility

to draw diagrams, with a H±W∓h/H vertex, where h/H goes into an external Z boson. Those

diagrams vanish due to the different quantum numbers of h/H and Z. Diagrams that contain

propagators denoted by h/H are to be counted as two diagrams: one diagram with a h boson

running in the loop and one with a H boson instead. All of the diagrams in this figure vanish due

to the form of the AH±W∓ vertex as discussed in the text.

model, that the calculated partial widths of ΓH±→W±Z/γ are UV finite. For completeness

we also note that the processes H± → W±Z/γ have been considered for the MSSM, as

well as type I and II 2HDMs, in [61].

5.2.3 H± →W±h/H/A→ multiple fermions

In addition to the loop-decays already discussed, the H± can also decay into fermions via,

possibly off-shell W±, h,H and A bosons. Here we limit the discussion to decays into 4 or

6 fermions, ΓH±→4f/6f . For 4 fermion decays the only relevant channel is

ΓH±→4f = Γ(H± → [W±∗ → 2f ] + [h∗/H∗ → bb̄]). (5.6)

For 6 fermion final states there are several different amplitudes that contribute. In principle

the partial width should be calculated from the sum of all of all these. In line with this

we add the contributions from (possibly) virtual h,H on the amplitude level. However, we

do not consider possible interference terms between diagrams with different vector boson

propagators. In other words, we approximate

ΓH±→6f ≈ Γ(H± → [W±∗ → 2f ] + [h∗/H∗ →W ∗W ∗ → 4f ]) (5.7)

+ Γ(H± → [W±∗ → 2f ] + [h∗/H∗ → Z∗Z∗ → 4f ]), (5.8)

as is standard practice. We also define

ΓH±→Wh/H ≡ ΓH±→4f + ΓH±→6f . (5.9)

We calculate these widths using the 2hdmc implementation of our model interfaced with

the tree-level matrix-element and Monte Carlo phase-space generator MadGraph [67,

68], with non-zero widths included for the internal propagators using the prescription in

eq. (D.6).

As we will see in section 5.2.4, ΓH±→Wh/H is negligible in comparison to the partial

widths ΓH±→ff̄ ′ and ΓH±→W±γ for mH± < mS . 2mW , where S is the lightest of A and h,
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(c) mA = mH± , mh = 125 GeV, (d) mA = mH± , mh = 75 GeV,

mH = 300 GeV, sinα = 0.9. mH = 125 GeV, sinα = 0.1.

Figure 18. The branching ratios of the charged scalar H± as a function of mH± . The solid black

line shows the W±γ mode, dotted black W±Z, solid cyan W±A, dashed cyan W±h/H and dotted

magenta tb. In this figure, we have λ3 = 2(mH±/v)2, λ2 = λ1 and λ7 = λ6. The scenarios in

(a) and (b) are phenomenologically disfavored since EWPT require mA > mH± for these values of

mH± (see figure 4 and the related discussion).

even after the inclusion of off-shell h/H and A bosons. This is due to the smallness of the

widths of the h,H and A bosons below the h/H → WW/ZZ and A → Zh/H or W±H∓

thresholds. The effects of off-shell h,H and A bosons can become sizable when we consider

larger mh,H,A, i.e. when the sub-channels h/H → V V or A → Zh/H are kinematically

open, so that Γh,H,A = O(1 GeV). One should also remember that the AH±W∓ coupling

is independent of the mixing angle α.

5.2.4 Decay widths and branching ratios for H±

We have now come to the point where we can compare the magnitudes of the different

decay modes under consideration in our standard cases with λ3 = 2(mH±/v)2, λ2 = λ1

and λ7 = λ6 as is illustrated in figure 18. Here we have calculated the partial width of the

decay mode H± →W±∗A using the closed formulas included in 2hdmc.
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First of all it should be noted that the contribution to the decay modes of H± from the

processes H± → τν and H± → cs is very small: BR(H± → τν) + BR(H± → cs) < O(1%).

As mentioned, due to the broadness of the W± boson, the H± → W±∗γ mode dominates

over H± → τν and H± → cs even below the threshold, mH± < mW . If one considers

mA < mH± , the decay mode H± → W±∗A will start to make a significant contribution

and will dominate the branching ratios for the charged scalar below the W±γ threshold,

mH± < mW . If we consider Case 1, then the mass of the A boson has to be heavier than

H± for mH± . M (according to the limits from EWPT illustrated in figure 4a with M

given by eq. (3.2)) and the decay mode H± →W±A is therefore not possible for light H±.

For charged scalar masses larger than mW , the decay mode H± → W±γ will dominate,

provided that H± is the lightest scalar in our model. The tb and WZ modes will contribute

to the branching ratios of the order a few percent.

A phenomenological consequence is that the charged scalar in our model is not con-

strained by the LEP result mH± & 80 GeV, valid for BR(H± → cs) + BR(H± → τν) =

1 [47, 69, 70]. Moreover, the Wγ channel can be dominant, and WZ of order 1%. This is to

be compared to the case of type-I or II 2HDMs and MSSM where the maximal branching

ratios for the Wγ mode are ∼ O(10−5) and WZ ∼ O(10−3) [61].

Note that, as shown in figure 15, the width of H± can become very small in some

regions of parameter space. For example, if the width would be 1 eV, then the proper

decay length is cτ ∼ 0.2µm, and if the width is as small as 1 meV, then cτ ∼ 0.2 mm.

It would therefore be interesting to study whether this could lead to tracks or displaced

vertices in the detector. Such signatures have been studied by the CMS collaboration in

[71].

5.3 Decays of the CP-odd scalar A

We end this section on scalar decays by considering the decays of the A boson. As men-

tioned for the H± bosons, we do not know a priori if the decay modes of the A boson into

4 or 6 fermions, via possible off-shell bosons, dominates over A → ff̄ , which proceeds at

one-loop at the lowest order in our model4. The decay modes of the A boson into 4 or

6 fermions through possible off-shell h,H,H±, Z and W± bosons are calculated in a very

similar way as the decay of the charged scalar, in section 5.2.3.

5.3.1 A→ ff̄

The situation here is similar to the situation for the charged scalar: the CP-odd scalar

A couples to a pair of fermions with the same diagrams as the charged scalar, but with

the W± or G± bosons replaced with Z or G0 in the loop. The A bosons will mix with

longitudinally polarized Z bosons (and with G0 bosons in Rξ gauge), which in turn go into

4Note that due to the quantum numbers of the A boson, the amplitudes for A → V V , where V V =

W+W−, ZZ, γγ, Zγ or gg, are zero at tree-level. In general 2HDMs, the A boson can couple to a pair of

gauge bosons at one-loop order through a loop of fermions [72]. This is not the case in our model due to

the vanishing of the tree-level couplings between A and a fermion pair, CAff̄ ∼ ρF = 0. This means that

in our model, A→ V V is a two-loop process. We will not consider these decay modes in this paper.
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Figure 19. The ratio ζ =
[
ρL
]
33
/ (mτ/v) as a function of mA. The solid line is for sinα = 0.7

and the dotted for sinα = 0.95. The other parameters of the model are taken to be mh = 125 GeV,

mH = 300 GeV, mH± = mA.

a pair of fermions. We will renormalize the AZ and AG0 mixing in the same way as for

H±W± and H±G±, i.e., the real part of the mixing vanishes for an on-shell A boson.

One way to give a measure of the magnitude of the loop-generated ρF elements in

our model is by comparing e.g. ΓA→τ+τ− calculated in our model (at one-loop level)

with the tree-level result obtained in a generic model. Writing the effective interaction

as iΨ̄τ

[
ρL
]
33
γ5Ψτ A, we can calculate the effective coupling

[
ρL
]
33

from

ΓA→τ+τ− =
([
ρL
]
33

)2 mA

8π

√
1− 4m2

τ

m2
A

. (5.10)

Defining the ratio

ζ ≡
[
ρL
]
33

mτ/v
, (5.11)

where ζ = 1 is the value obtained in a Type-I 2HDM with tanβ = 1, we find that the

magnitude of ζ in our model is O(10−3) if mA . mh + mZ , see figure 19. Note that this

effective coupling is independent of the values of mH± , λ3, λ2, and λ7.

Another property of the model is that at lowest order we have

ΓA→cc̄
ΓA→ss̄

=
m2
c

m2
s

. (5.12)

In this sense, our model is therefore Type I-like. Furthermore, as already mentioned, the

off-diagonal entries in the ρF matrices are zero at one-loop level. This is due to the absence

of a W± boson in the diagrams for the process A → ff̄ . At two-loop order, off-diagonal

ρF matrix elements are generated and will introduce new FCNC in our model.

5.3.2 Decay widths and branching ratios for A

The result of the calculations for the partial widths and branching ratios for the A boson

is similar to those of the charged scalar. If the CP-odd scalar is not the lightest scalar

in our model, the dominating decay mode is A → SV , where S is the lightest scalar and
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(a) mH± = mA, mh = 125 GeV, (b) mH± = mA − 45 GeV, mh = 125 GeV,

mH = 300 GeV, sinα = 0.9. mH = 300 GeV, sinα = 0.9.

Figure 20. The various branching ratios for the scalar A: dotted magenta A→ bb̄, solid magenta

A→ cc̄, dashed magenta A→ ττ , dashed black A→ Zh/H, solid black A→W±H∓. Here λ3 = 0,

λ2 = λ1 and λ7 = λ6.

Zh/Hbb

ΤΤ

cc

50 100 150 200

0.01
0.02

0.05
0.10
0.20

0.50
1.00

mA HGeVL

B
R

Figure 21. The branching ratios for the scalar A: dotted magenta is bb̄, solid magenta cc̄, dashed

magenta ττ , dashed black Zh/H. mH± = mA, mh = 75 GeV mH = 125 GeV, sinα = 0.1. Here

λ3 = 0, λ2 = λ1 and λ7 = λ6.

V the associated vector boson. If A is the lightest scalar, the bb̄ mode dominates, see

figure 20 and figure 21. The partial decay widths A→ ff̄ are proportional to sin2 2α and

can be very small, figure 22. In Case 1 there is no region in parameter space which allows

the A boson to be the lightest scalar. As was outlined in section 3, in Case 1 one should

have mA & mH± + 50 GeV in order to fulfill the constraints from EWPT for mH± below

mh = 125 GeV. In Case 2 we have larger freedom to choose mA and mH± according to

figure 4b. But the recent LHC results restrict the possible mA and mH± since e.g. the

decay mode H → AZ∗ (with Z far off shell) should not be allowed.

– 30 –



bb

Zh/H

H ± W ¡

50 100 150 200
10-11

10-9

10-7

10-5

0.001

0.1

mA HGeVL

G
A

HG
eV

L

bb

Zh/H

50 100 150 200
10-13

10-10

10-7

10-4

0.1

mA HGeVL

G
A

HG
eV

L

(a) mh = 125 GeV, mH = 300 GeV, (b) mh = 75 GeV, mH = 125 GeV,

mH± = mA − 45 GeV, sinα = 0.9. mH± = mA, sinα = 0.1.

Figure 22. The partial decay widths ΓA as a function of mA. Dotted magenta is bb̄, dashed black

Zh/H, solid black W±H∓. Here λ3 = 0, λ2 = λ1 and λ7 = λ6.

6 The scalars of the SDM at collider experiments

We have seen that the scalars in our model, and in particular H± and A, can have non-

standard decay modes. If H± is the lightest scalar, its dominating decay mode will be

H± →W±γ. In this section we now consider the production of the scalars. As mentioned

in section 4, the CP-even scalars h and H are produced in the same way as HSM in gg-fusion

and VBF, but with modified couplings

σk(pp→ Hi) = κHi σk(pp→ HSM), (6.1)

where Hi = h,H, κh = sin2 α, κH = cos2 α and σk are the production cross-sections

through gg-fusion or VBF.

The discovery of a charged scalar H± has for long been considered a sure sign of physics

beyond the SM. In the standard scenarios such as MSSM, NMSSM or 2HDMs, H± are

produced primarily in top quark decays if they are light, or if they are heavy, in association

with top and bottom quarks in gg and gb collisions.

In our model, the tbH± coupling is zero at tree level and is instead generated by loops,

and the same holds for the Abb̄ coupling. We have calculated the loop-generated decay

width Γt→H+ b in our model in the same way as we calculated ΓH+→t b̄. The result is

that the branching ratio BR(t → H+ b) is less than 10−6 for allowed points in parameter

space (the λ parameters can not be arbitrarily large). So due to the absence of tree-level

fermion couplings for H± and A, we will neglect the standard production mechanisms of

the H± involving the tb̄H+ couplings and the gg → A channel for the A. Other production

mechanisms must therefore be considered. Our model thus leads to a novel phenomenology

of the H± and A bosons, with both production and decay modes being non-standard. More

detailed phenomenological studies of H± and A will be performed in future work, but in

this section, we briefly outline some channels that will be important. Production cross

sections for light charged Higgs bosons in general 2HDMs can be found in [73].
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Figure 23. Hadronic cross-sections for various production mechanisms as functions of mH± :

(a) σ(pp → H+H−) at LHC 8 (14) TeV solid (dashed) and σ(pp̄ → H+H−) at the Tevatron

(dotted), (b) σ(pp → H+A) at LHC 8 TeV. For the solid/dashed/dotted lines, we have mA =

mH± + 0/25/50 GeV, (c) σ(pp→ H+h) at LHC 8 TeV. For the solid line, we have mh = 125 GeV

with sinα = 0.9, the dashed (dotted) line mh = 95 (75) GeV with sinα = 0.1, (d) σ(pp → H+H)

at LHC 8 TeV. For the solid (dashed) line, we have mH = 200 (300) GeV with sinα = 0.9 and for

the dotted line mH = 125 GeV with sinα = 0.1.

6.1 Production of H±

The production of a pair of charged scalars in qq̄ collisions through s-channel γ∗/Z∗ ex-

change depends on the electroweak couplings through the ZH+H− and γH+H− vertices.

Except for the dependence on mH± , the partonic cross section for qq̄ → H+H− does not

depend on the parameters of the scalar potential, if one neglects the contribution from

s-channel processes with h and H bosons, whose couplings to the quarks involved are very

small. To get a first estimate of the hadronic production cross sections we have calculated

σ(pp→ H+H−) at
√
s = 8 TeV and 14 TeV and σ(pp̄ → H+H−) at

√
s = 2 TeV using

the LO Monte Carlo generator software MadGraph [67, 68] with CTEQ6L1 PDFs and

using factorization and renormalization scales set to µ = MZ . The results are shown in

figure 23a as a function of mH± .

Another production process to consider is the associated production qq̄′ → W ∗ →
H± S, where S = h,H or A. This will give cross sections of similar magnitude as qq̄ →
γ∗/Z∗ → H+H−, provided that the sum of the final state rest masses are similar; mH± +
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mS ≈ 2mH± . In figure 23b–d we show the leading order hadronic cross sections at the

LHC with
√
s = 8 TeV, as calculated with MadGraph, for pp → H+A, pp → H+h and

pp → H+H respectively. We note that the process qq̄′ → W ∗ → H±A is independent of

the mixing angle α, whereas the qq̄′ → W ∗ → H±Hi processes have a dependence on α

through the W±H∓Hi coupling, where Hi = h,H.

6.2 Production of A

The process gg → A occurs at two-loop level in our model. We will instead consider those

regions in parameter space where it can be produced in decays of the other scalars or in

association with those. If H is heavy enough, its decays H → AZ,AA could contribute a

significant amount of the total production cross section of A bosons at the LHC. One could

also consider the process qq̄′ → Z∗ → Ah/H for which the cross section is similar to the

previously discussed qq̄ → H±A/h/H. One would then have to consider the subsequent

decay of the A boson into hZ or H±W∓. If A is the lightest scalar of the model one has

to instead consider A→ bb̄.

We also note that if A is the lightest scalar, the decay width can be very small,

ΓA < 1 meV as shown in figure 22b, for sinα ∼ 0.1. This feature might open for signatures

with displaced vertices in the detectors, provided that the A bosons are produced with

sufficient pT relative to its mass to that the γ-factor from the boost is large enough.

7 Conclusions and summary

In this paper, we have discussed a novel type of 2HDMs, first introduced by us in [14],

where the Z2 symmetry is softly broken and only one of the doublets has a non-zero vev.

This leads to that only one of the doublets has tree-level fermion couplings, and that new

FCNCs occur first at the two-loop level. Since the H± and the A bosons reside solely in the

fermiophobic doublet, indirect constraints from flavor observables do not apply. We also

demonstrated that there are substantial regions of the parameter space of the model which

satisfy theoretical constraints, are compatible with EWPT and earlier Higgs searches, and

with the new LHC results. In particular,we have considered the H → γγ and H → ZZ

signal strengths, where H denotes the observed Higgs boson.

We have calculated the decay rates of all scalars, and in particular the decays of the H±

and A bosons that occur through one-loop processes at lowest order. Decay modes involving

off-shell final state particles have also been considered in detail. These calculations show

that if the H± boson is the lightest scalar of the model, the non-standard decay mode

H± → W±γ will normally dominate. Otherwise, decays of H± into on-shell scalars and

off-shell vector bosons will dominate. The decay modes of the A boson show a similar

behavior as for the H± boson. If A is not the lightest scalar, then A will decay into on-

shell scalars and off-shell vector bosons. If A is the lightest scalar, A→ bb̄ is the dominating

decay channel.

Since the H± and A bosons of this model are fermiophobic at tree level, they have

loop-suppressed standard production channels at hadron colliders. Therefore, we consider

production of these scalars in pairs, and in association with vector bosons and other scalars.
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These production channels could originate from qq̄′ collisions or H decays. We estimate

that, if light enough, H± and A should already had been produced in considerable amounts

at the LHC. Therefore, more detailed investigations of such scenarios should be considered,

in particular the case where H± →W±γ is the dominating decay mode.
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Appendices

A Couplings

In this Appendix we give the three-particle couplings of scalars and gauge bosons. We do

not list all the Goldstone boson couplings or the four-particle couplings, but these can be

easily obtained using the FeynRules implementation of the model. As before, we define

sα = sinα, cα = cosα, and sW = sin θW . The triple scalar couplings of the model are then

given by gijk = −ivcijk for i, j, k = h,H,A,H±, where

chhh = 3
(
−s3

αλ1 + 3cαs
2
αλ6 + c3

αλ7 − c2
αsαλ345

)
, (A.1)

cHHH = 3
(
c3
αλ1 + 3c2

αsαλ6 + s3
αλ7 + cαs

2
αλ345

)
, (A.2)

chhH = 3s3
αλ6 − 3c2

αsα (2λ6 − λ7) + cαs
2
α (3λ1 − 2λ345) + c3

αλ345, (A.3)

chHH = 3c3
αλ6 − 3cαs

2
α (2λ6 − λ7)− c2

αsα (3λ1 − 2λ345)− s3
αλ345, (A.4)

chAA = −sα (λ3 + λ4 − λ5) + cαλ7, (A.5)

cHAA = cα (λ3 + λ4 − λ5) + sαλ7, (A.6)

chH+H− = −sαλ3 + cαλ7, (A.7)

cHH+H− = cαλ3 + sαλ7, (A.8)

chH+G− =
1

2
(2sαλ6 − cα(λ4 + λ5)) , (A.9)

cHH+G− = −1

2
(2cαλ6 + sα(λ4 + λ5)) . (A.10)

Coming to the gauge–scalar couplings, we start with the SSV couplings. Writing the

Feynman rules as

S1S2V : gS1S2V (pµS1
− pµS2

), (A.11)

– 34 –



where the momenta are taken to be incoming, we have

ghAZ =
ecα

2cW sW
, gHAZ =

esα
2cW sW

, (A.12)

ghH±W∓ = ∓ iecα
2sW

, gHH±W∓ = ∓ iesα
2sW

, (A.13)

gAH±W∓ = − e

2sW
, (A.14)

gH+H−Z =
ie
(
c2
W − s2

W

)
2cW sW

, gH+H−γ = ie . (A.15)

Finally we have the SV V couplings, which we write as

SV V : gSV V g
µν (A.16)

with

ghZZ = − ie2vsα
2c2
W s

2
W

, gHZZ =
ie2vcα
2c2
W s

2
W

, (A.17)

ghW+W− = − ie2vsα
2s2
W

, gHW+W− =
ie2vcα
2s2
W

, (A.18)

ghG±W∓ = ± iesα
2sW

, gHG±W∓ = ∓ iecα
2sW

. (A.19)

The gauge–scalar couplings are thus the same as in general 2HDMs with the replacement

β → 0.

B Renormalization

We here give a summary of the on-shell renormalization scheme used in [61]. The on-shell

renormalization scheme at one-loop order for 2HDMs and the MSSM is also discussed in

e.g. Refs. [74–78]. We renormalize the doublets and vevs according to:

Φi →
√
Zi Φ̂i , vi → v̂i − δvi , (B.1)

where v2 = 0 at tree level in our model, and the wavefunction renormalization constants

Zi are expanded as Zi = 1 + δZi at one-loop order. These redefinitions are then inserted

into the kinetic Lagrangian for the doublets. After this insertion, we obtain the following

counterterms (Aµ is the photon field):

δH±W∓ (∂µH±)W∓µ , (B.2)

δH±W∓γ H
±W∓µ Aν = eδH±W∓H

±W∓µ Aν , (B.3)

δH±W∓Z H
±W∓µ Zν = e

sW
cW

δH±W∓H
±W∓µ Zν , (B.4)

for the mixings and vertices respectively, where

δH±W∓ =
mW

v̂2
1 + v̂2

2

[v̂1δv2 − v̂2δv1 + v̂1v̂2(δZ1 − δZ2)] . (B.5)
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Figure 24. The imaginary part (a) and the real part (b) of the on-shell renormalized off-diagonal

self energy Σ̂H±W∓ as a function of the invariant mass k. In this figure we have mH± = 100 GeV

(solid), mH± = mh +mW± (dashed) and mH± = 300 GeV (dotted). The other parameters in our

model are taken to be mh = 100 GeV, mH = 300 GeV, mA = mH± , sinα = 0.9, λ3 = 0, λ2 = λ1
and λ7 = λ6.

Hence, the renormalization of the H±W∓Z and H±W∓γ vertices depends on the H±W∓

mixing renormalization.

In order for the one-loop potential to be minimized by v̂1 and v̂2, we require that the

renormalized tadpoles vanish:

Th/H + δth/H = 0, (B.6)

where Th/H denotes the sum of all tadpole diagrams for the field h/H and δth/H the tadpole

counterterms at one-loop order.

The on-shell renormalization scheme proceeds by requiring that the real part5 of the

renormalized off-diagonal self-energy Σ̂H±W∓ vanishes for an on-shell H±:

Re
[
Σ̂H±W∓(k2 = m2

H±)
]

= 0, (B.7)

which then determines δH±W∓ according to

Re
[
Σ̂H±W∓(k2 = m2

H±)
]

= Re
[
ΣH±W∓(k2 = m2

H±)
]

+ δH±W∓ = 0, (B.8)

where the bare self-energy ΣH±W∓ is given by eq. (C.3). Furthermore, the renormalization

of the H±G∓ mixing is also determined by δH±W∓ due to a Slavnov–Taylor identity that

forces Σ̂H±W∓ and Σ̂H±G∓ to be proportional to each other [61, 78, 79].

For illustration we show the real and imaginary parts of the renormalized self-energy

Σ̂H±W∓ in figure 24. Note that the real part vanishes for an on-shell H± as prescribed.

Note also that the imaginary part is only non-zero when the internal particles in the loop

(W±, h and H) can be produced on-shell, i.e. when k > mh +mW .

By following the same prescription outlined here and in [61], we find that the coun-

terterm for AZ mixing is proportional to the one obtained for H±W∓ mixing, δAZ =

i(mZ/mW ) δH±W∓ . The AZ mixing is also defined to vanish on-shell,

Re
[
Σ̂AZ(k2 = m2

A)
]

= 0 , (B.9)

5δH±W∓ is real since we consider a CP-conserving scalar sector.
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and the AG0 mixing is related to this by a similar Slavnov–Taylor identity as for the H±G∓

mixing. All in all this means that the AZ and H±W∓ mixing cannot vanish on-shell at the

same time. At one-loop order this is not a problem since the AZ and H±W∓ mixing cannot

both be present in the same set of diagrams, and we are free to choose whatever scheme

(i.e. values of the counterterms) we want. However, if we include two-loop diagrams, then

inconsistencies may arise but this is not relevant for this study, so we leave aside the issue

of on-shell renormalization of 2HDMs, and in particular of our model, at arbitrary order

in perturbation theory.

In a perturbative expansion using Rξ gauge one must also include Faddeev–Popov

ghosts. The ghosts corresponding to W± and Z couple only to h/H in the scalar sector

and only occur in loop diagrams. For diagrams that contribute to the matrix elements

for ΓH±→ff̄ ′ , ΓH±→W±Z/γ and ΓA→ff̄ at one loop order, the tadpole diagrams are the

only ones that contain ghosts. Since we require the sum of the tadpole diagrams to vanish

according to eq. (B.6) we do not need to include the ghost contributions explicitly in our

calculations. It is however straightforward to include ghosts in our model. One just makes

the replacement HSM → H cosα−h sinα in LSM
ghost [75], which gives the following couplings

between ghosts (ηV ) and h,H,

ghηV η̄V = isα ξm
2
V /v , gHηV η̄V = −icα ξm

2
V /v , (B.10)

where V = W+,W− or Z.

C Expressions for the vertices and mixing self-energies

In this appendix we give the expressions for the unrenormalized vertices and self-energies.

The vertex function VH+L−ν for H+ → L+ν in Feynman–’t Hooft gauge is at leading order

defined as

MH+→L+ν ≡ [ūL+ PR vν ]VH+L−ν (m2
H± ,m

2
L, 0 ) , (C.1)

where MH+→L+ν is the matrix element for the triangle loop contribution to H+ → L+ν,

see figure 9b. The vertex function reads

16π2 VH+L−ν (m2
H± ,m

2
L, 0 ) = ghL+L−ghH+W− g̃ B0(0,m2

L,m
2
W )

− ghL+L−
[
ghH+G−gG+L−νmL − ghH+W− g̃(m2

H± +m2
h − 4m2

L)
]

× C0(m2
H± ,m

2
L, 0,m

2
W ,m

2
h,m

2
L)

+ ghL+L−
[
ghH+G−gG+L−νmL − ghH+W− g̃ (m2

H± − 2m2
L)
]

× C1(m2
H± ,m

2
L, 0,m

2
W ,m

2
h,m

2
L)

+ ghL+L−ghH+W− g̃ (m2
H± −m

2
L)

× C2(m2
H± ,m

2
L, 0,m

2
W ,m

2
h,m

2
L) + (h→ H), (C.2)

where B0, C0, C1, C2 are Passarino–Veltman integrals [80], g̃ = ie/
√

2sW , ghL+L− = imL/v,

gG+L−ν = −i
√

2mL/v, and the remaining gijk are given in Appendix A. The (h → H)

indicates the four terms that have a H boson running in the loop instead of h, which
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are obtained if one makes the replacement h → H. The vertex function for H+uid̄j is

analogous to VH+L−ν , but has more terms due to the non-vanishing quark masses.

The bare off-diagonal H+W− self-energy in Feynman–’t Hooft-gauge reads

16π2 ΣH+W−(k2) = ghH+W− ghH+H

[
B0(k2,m2

h,m
2
H±) + 2B1(k2,m2

h,m
2
H±)

]
− ghH+W− ghW+W−

[
2B0(k2,m2

h,m
2
W ) + B1(k2,m2

W ,m
2
h)
]

+ ghG+W− ghH+G−
[
B0(k2,m2

h,m
2
W ) + 2B1(k2,m2

h,m
2
W )
]

+ (h→ H) ,

(C.3)

where again B0 and B1 are Passarino–Veltman functions. The (h→ H) indicates the three

terms that have a H boson running in the loop instead of h are obtained if one makes the

replacement h→ H.

One should notice that the matrix element MH±→W± for the transition H± → W±

vanishes. This is because of the Feynman rules for the hH±W∓ and HH±W∓ vertices,

which are present in the diagrams in figure 10:

SH±W∓ : gSH±W∓
[
pµ
H± − p

µ
S

]
, (C.4)

where S = h,H and the four-momenta are taken to be incoming. This means that the

mixing diagrams are all proportional to pµ
H± = pµW , which, combined with eq. (5.3) for a

final state W± boson results in MH±→W± = 0. A H± boson can therefore not fluctuate

into an (on-shell) W± boson, which is a renormalization-scheme independent statement.

The vertex functions for A→ 2f are obtained similarly. We do not give the expressions

for the vertex functions for H± →W±V here, but they can be found in Ref. [61].

D The smeared mass unstable particle model

The smeared mass unstable particle (SMUP) model is based on the time–energy uncertainty

relation and the Källén–Lehmann form of the exact propagator where finite width effects

are taken into account in the spectral density, see [65, 66] and references therein. The reason

we use this model is that it requires only the use and knowledge of Γ∗
H±→W±∗γ(mH± , q)

defined below.

To evaluate the decay width for H± →W±
∗
γ for a given mass of the charged scalar,

mH± , one considers the invariant mass of the virtual W , mW±∗ ≡ q, as a free parameter

and defines

ΓH±→W±∗γ(mH±) =

∫ m2
H±

0
Γ∗H±→W±∗γ(mH± , q) ρ(q) dq2, (D.1)

where Γ∗
H±→W±∗γ(mH± , q) is the decay width for H± → W±

∗
γ with the off-shell W±

having a specific invariant mass q. This is folded with the spectral density ρ(q), defined as

ρ(q) =
1

π

qΓW (q)

[q2 −m2
W ]2 + [qΓW (q)]2

(D.2)

where we have used mW = 80.4 GeV and

ΓW (q) =
9 g2

48π
q. (D.3)
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Figure 25. (a) Comparison of off-shell (dashed blue line) and on-shell (solid red line) decay widths

for H± → γW±. (b) The ratio of the on-shell and the off-shell decay widths. The parameters of the

model take the values mh = 125,mH = 300 GeV, mA = mH± , sinα = 0.9 and λ3 = 2(mH±/v)2.

We evaluate eq. (D.1) by using our code for H± → W±γ with on-shell W± but allowing

the W±-mass to vary. We then integrate numerically over the spectral density.

As a check of the formalism, we also applied the SMUP model to the well-known

SM process HSM → W−∗W+∗. Comparison with known “standard” formulas [81, 82]

show excellent agreement with a difference of less than 2%. The standard formula for

HSM →W−∗W+∗ with a fixed width reads [82]

ΓHSM→W−∗W+∗(mHSM
) =

∫ m2
HSM

0

dq2
1 mWΓW /π

[q2
1 −m2

W ]2 +m2
WΓ2

W

∫ k2

0

dq2
2 mWΓW /π

[q2
2 −m2

W ]2 +m2
WΓ2

W

Γ0

(D.4)

where k = mHSM
− q1, and

Γ0 =
m3
HSM

16πv2

√√√√(1− q2
1

m2
HSM

− q2
2

m2
HSM

)2

− 4
q2

1q
2
2

m4
HSM

(1− q2
1

m2
HSM

− q2
2

m2
HSM

)2

+ 8
q2

1q
2
2

m4
HSM

 .
(D.5)

This formula is obtained by denoting the denominator of the respective W±-propagators

as

q2
i −m2

W + imWΓW , (D.6)

where q2
i is the invariant mass squared of the i’th off-shell W±-boson. We stress that,

differently from the SMUP method, the quantity Γ0 in (D.4) should not be literally in-

terpreted as neither the decay width of the Higgs boson to a pair of virtual bosons with

invariant masses q1, q2 nor as the matrix element squared.

As a further check, we evaluate ΓH±→W±∗γ for mH± far above the threshold, with the

result that the off-shell calculation coincides with the on-shell result, as shown in figure 25b.
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