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1 Introduction

The study of charmonium decays has seen in the
last years a remarkable progress and a renewed
interest. New experimental measurements, main-
ly coming from Belle, BES, CLEO and E835
[1] have improved existing data on several ex-
clusive hadronic decay channels leading to bet-
ter determinations of the charmonium branch-
ing fractions. On the theory side several heavy
quarkonium decay observables can be studied
using effective field theories of QCD as Non-
Relativistic QCD (NRQCD) and its extensions
[2]. The latter is also a recent review in general
of quarkonium physics.

In this letter we focus on the OZI suppressed
decays of χc0, χc2 into two light pseudoscalar
mesons, ππ, KK, ηη (χc0, χc2 → PP ) and we
present the arguments why we have no similar
results for J/ψ, ψ(nS), χc1 decays to the same
final state. We explore the possibility to calcu-
late the contributions to the decay amplitudes
due to the so-called chiral logarithms. These
have the form m2 log (m2), where m is the mass

a Address from 1 October 2011: University of Vi-
enna, Faculty of Physics, Boltzmanngasse 5, A-1090
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of a light meson1 and these are potentially the
largest contribution from the light quark masses.
Surprisingly, we find that for χc0, χc2 → PP
these contributions vanish. This is not necessar-
ily the case for scalar quantities at high q2 as
we show with the case of the scalar formfactor.

Terms of the typem2 log(m2) and other non-
analytic dependence on the input parameters
can be produced by soft meson loops [3]. The
modern version of this method is Chiral Per-
turbation Theory (ChPT) [4,5,6], see also the
lectures [7,8]. All of these applications require
the octet of pseudoscalar mesons to have soft
momenta which is not the case in charmonium
decays. However, it has been argued that even
for cases with pseudoscalar mesons at large mo-
menta there are still predictions possible. This
was first argued for Kℓ3 decays in [9] and later
argued to be more general and applied to K →
ππ [10] and B → D, π,K, η vector formfactors
and the pion and kaon electromagnetic form-
factors [11,12]. The underlying arguments were
tested at two-loop level for the pion vector and
scalar formfactor in [12]. We refer to this method
as hard pion ChPT (HPChPT).

1 In the remainder of this letter m stands for mπ,
mK and mη.
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The underlying argument in HPChPT is that
the chiral logarithms are coming from the soft
part of all diagrams when we envisage a the-
ory with hadrons with an effective Lagrangian
to all orders. This should be able to describe all
effects according to Weinberg’s folklore theorem
[4]. The hard part of these diagrams around a
particular kinematical situation are describable
by a tree level Lagrangian that is analytic in the
soft physics. Loops using the latter Lagrangian
thus reproduce the nonanalytic dependence of
the underlying loop diagrams in the full theory.
The second part is then proving that we use a
sufficiently complete tree level Lagrangian. This
has been done in all the previous works [9,10,
11,12] by showing that higher order operators
have the same matrix element as the lowest or-
der operator up to terms analytic in the light
pseudoscalar masses. This allowed the determi-
nation of the chiral logarithms for the processes
mentioned earlier. The same arguments are ap-
plicable to the present decays.

In Section 2 we define the notation and give
the lowest order Lagrangians involving charmo-
nium fields. Section 3 describes the relevant loop
calculations. We note that our zero result for the
chiral logarithm is in fact valid for all fully chiral
singlet states of spin 0 and 2. One consequence
of our result is that light quark mass corrections
in the χc0, χc2 → PP decays are not enhanced.
We compare this statement with the available
experimental results in Section 4.

2 Formalism

First we shortly summarize the formalism of
ChPT in its three-flavour version [6]. Introduc-
tions to ChPT can be found in [7,8]. Hereafter
we will use the same notation as in [13]. In
ChPT it is assumed that the spontaneous sym-
metry breaking of chiral symmetry takes place.
In group theory language it has the pattern
SU(3)R×SU(3)L/SU(3)R → SU(3)V . The os-
cillations around the vacuum are described by
the field u ∈ SU(3)

u = exp

(

i√
2F0

φ

)

, (1)

where φ is an hermitian matrix containing the
pseudo Goldstone bosons, i.e. the light pseu-

doscalar mesons

φ =







1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η






.(2)

The lowest order Lagrangian describing the strong
interactions of the mesons must satisfy the same
symmetries of QCD and reads

L(2)
ππ =

F 2
0

4
(〈uµuµ〉+ 〈χ+〉) , (3)

with

uµ = i{u†(∂µ − irµ)u − u(∂µ − ilµ)u
†} ,

χ± = u†χu† ± uχ†u ,

χ = 2B0(s+ ip) .

The fields s, p, lµ = vµ − aµ and rµ = vµ + aµ
are the standard external scalar, pseudoscalar,
left- and right-handed vector fields introduced
by Gasser and Leutwyler [5,6]. s includes the
light quark mass matrix.

The field u and uµ transform under a chiral
transformation gL × gR ∈ SU(3)L × SU(3)R as

u −→ gRuh
† = hug†L, uµ −→ huµh

†. (4)

In (4) h depends on u, gL and gR and is the
so called compensator field. The notation 〈X〉
stands for trace over up, down, strange.

As anticipated in Section 1 the use of ChPT
is limited to those processes where the pseu-
doscalar mesons are not very energetic. Indeed
the power counting is based on an expansion in
m2/Λ2 and in p2/Λ2, where Λ is around 1 GeV
and is the scale up to which ChPT is believed
to work. However sometimes the dependence on
the light pseudoscalar masses outside such en-
ergy regime is needed. In such cases the exten-
sion of ChPT to hard pion ChPT is necessary.
For an extended explanation of the arguments
leading to hard pion ChPT we refer the inter-
ested reader to [9,10,11]. Here we only stress the
key features of such extension. When calculating
the amplitudes of processes involving hard pseu-
doscalar mesons the Feynman diagrams contain
both hard and soft lines. The application of hard
pion ChPT involves a separation of the first
ones from the latter. The hard lines get con-
tracted into a vertex of another effective La-
grangian. The couplings appearing there must
therefore depend on the hard quantities. The
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soft lines instead encode the dependence on the
soft parts, like the light masses of the pseu-
doscalar mesons, and are used to calculate the
chiral logarithms. Such calculation is done us-
ing a Lagrangian built up in the same fashion
as the one of standard ChPT since the hard
parts must satisfy the constraints from chiral
symmetry. However one must keep in mind that
now the expansion that survives is in the small
parameter m2/Λ2, while the one in momenta
must be dropped. This means that adding ex-
tra derivatives to the Lagrangian is in principle
allowed since they are not suppressed by extra
powers of momentum. Fortunately it often turns
out that the matrix elements of operators con-
taining these extra derivatives are proportional
to those of the lowest order operator up to terms
either analytic in m2 or higher order. The co-
efficient of m2 logm2 is thus predictable. It is
important then that this happens in the case
under study as well.

The arguments in [9,10] are for a heavy to
two light decay and the exact same arguments
apply to the present case of charmonium to two
light pseudoscalars.

Charmonium states are full chiral singlets,
i.e. they do not transform at all under the chi-
ral SU(3)L × SU(3)R. Their kinetic terms are
thus the standard kinetic terms for fields of the
given spin without couplings to pions. The re-
sults obtained here are thus valid for all full chi-
ral singlets.

We only study decays to two light pseudo-
scalar mesons, in principle we could study de-
cays to three light mesons as well but the ex-
tension is not totally straightforward since the
HPChPT should be applied to each kinematic
configuration separately. Also for more particles
the operator structure is typically much more
involved.

We could as well study J/ψ, ψ(nS) and χc1

decays into two light pseudoscalar mesons. Again
the reason why we have not done this is that
it would be impossible to compare J/ψ → ππ
with respect to J/ψ → KK and similar for the
others. These two decays are caused by differ-
ent operators. The first one violates G-parity,2

it thus proceeds either through the electromag-
netic interaction or the quark mass difference
md − mu. The decays to a pair of kaons have
the same problem but instead with U or V -spin

2 Or more general, an L = 1 state of two pions is
in an I = 1 state.

rather than isospin. These decays thus proceed
electromagnetically or through the mass differ-
ences ms −mu or ms −md. Notice that this is
also the reason why the decay of J/ψ into ππ is
suppressed compared to the one intoKK. It fol-
lows that a simple comparison, as the one done
in Section 3 for χc0, χc2, is not possible.

We describe the χc0 state with a chiral sin-
glet, scalar field χ0 and the χc2 with a chiral
singlet symmetric traceless tensor field χ2µν sat-
isfying χ2µν = χ2νµ, η

µνχ2µν = 0 and on-shell
pµχχ2µν = 0.

We remind the reader that we are interested
in calculating the dependence of the amplitudes
on m2. To predict this we will stop at the chi-
ral logarithm level so we only calculate contri-
butions like m2 logm2. Terms of order m2 are
instead of higher order and thus neglected. This
means we can neglect all effects of χ± except
for the contribution to the light meson masses
and their effects in loop diagrams. In particular,
effects of the light quark masses on the charmo-
nium mass are linear in the light quark masses
or higher order.

It turns out that there is only one lowest
order operator for each case

Lχc
= E1F

2
0 χ0 〈uµuµ〉+E2F

2
0 χ

µν
2 〈uµuν〉 . (5)

We have added a factor of F 2
0 , the chiral limit

pion decay constant, to have the lowest order
independent of F0. We have actually added a
few more terms for the scalar case as an explicit
check on the HPChPT arguments. These are

LE
χc

= E3F
2
0 χ

2
0 〈uµuµ〉+E4F

2
0 χ0 〈∇µuν∇µuν〉 .

(6)

3 The Calculation

The tree-level diagrams and the loop-diagrams
that contribute to χc0, χc2 → PP are shown in
Figure 1. To these diagrams we also need to add
the wavefunction renormalization for the pseu-
doscalar meson. The wave function renormaliza-
tion for the charmonium states has no contri-
butions of order m2 logm2. The tree level result
from the diagram in Figure 1(1) reads

iA(χc0 → PP ) = −(m2
χ − 2m2

P )×
(

2E1 + E4(m
2
χ − 2m2

P )
)

,

iA(χc2 → PP ) = −4E2p
µ
1p

ν
2Tχµν . (7)
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(1) (2) (3)

Fig. 1. The tree-level (1) and the loop-diagrams
(2,3) contributing to the decays χc0, χc2 → PP up
to the order m2 logm2. The wiggly lines correspond
to a χc while the continuous line are π, K or η. A
round vertex correspond to an interaction from Lχc

while a box is a vertex from Lπ. Notice that the
diagrams of type (3) do not contribute with chiral
logarithms to the amplitudes.

Fig. 2. An example diagram involving a propa-
gator of the heavy particle in the loop. These do
not contribute to the chiral logarithms of order
m2 logm2.

The amplitude is the same for the final states
π+π−,K+K−,K0K0 and ηη when the meson
mass mP is chosen to be the appropriate one.
Tχµν is the polarization vector of χc2 and p1 and
p2 are the fourmomenta of the two mesons in the
final state. Here we also see that the example of
a higher derivative term containing E4 indeed
gives a result proportional to the lowest term
up to corrections of order m2.

When we go over the powercounting argu-
ments, only soft pseudoscalar propagators where
no derivatives act on the pseudoscalar fields as-
sociated with that propagator can give contri-
butions of order m2 logm2. As a consequence
only pseudoscalar meson wave function renor-
malization and the diagram in Figure 1(2) can
contribute terms of order m2 logm2 and we find
that these two contributions exactly cancel for
all decays considered. We indeed find that the
diagram in Figure 1(3) does not contribute terms
of order m2 logm2.

In baryon ChPT, and other extensions with
heavy particles, one can also get logarithmic
contributions from diagrams involving propaga-
tors of the heavy particle. The powercounting
argument together with the fact that all inter-
actions terms have derivatives show that these
should not be present here. We have explicitly
confirmed this with the diagram of Figure 2.
Putting in the vertices with E1 and E3 we in-
deed find no contributions of order m2 logm2.

We conclude this part with a final remark.
The above discussion is valid assuming that other
charmonium states are far enough in mass, so
that such states cannot appear as virtual par-
ticles in the loops, i.e. their contributions are
sufficiently hard that they can be described by
the same tree level Lagrangian (5).

We were somewhat surprised to find that
there were no chiral logarithms of leading or-
der in these decays, and more, since the only
assumption that goes in is the HPChPT and
the fact that we have a chiral singlet field. The
same arguments go through for the energy mo-
mentum tensor T µν which is a spin two chiral
singlet. The expressions for the matrix element
of the energy momentum tensor between pseu-
doscalar states 〈P |T µν |P 〉 are known to one-
loop order in ChPT [14]. Our result should pre-
dict the m2 logm2 parts of their result in the
limit q2 ≫ m2. Expanding (29) and (33) in [14]
in m2/q2 we indeed find that there are no loga-
rithms of order m2 logm2 appearing there.

In earlier work we have found many instances
of nonzero chiral logarithms in HPChPT. Most
of these were for the vector formfactor but we
did find a nonzero result for the pion scalar
formfactor 〈π|ūu + d̄d|π〉 at large q2 in two-
flavour HPChPT. Note that ūu + d̄d is a sin-
glet under SU(2)V but not under the full chi-
ral SU(2)L × SU(2)R so the calculations given
above do not restrict the chiral logarithms at
large q2 here.

4 Comparison with experiment for

χ
c0, χc2 → PP

The fact that the chiral logarithms of order
m2 logm2 vanish means that the leading term
in the expansion of m2 of the amplitudes van-
ish. One could thus expect that the SU(3)V
breaking in χc0, χc2 → PP should be some-
what smaller than the “usual” 20% as e.g. in
FK/Fπ or mΛ/mp. Terms of order m2 are how-
ever not predicted, so a very clear statement
that SU(3)V breaking effects are small is not
possible.

Let us however see how well the measured
amplitudes live up to the “small SU(3)V break-
ing effects.” We take the input data from [1].
These are given in Table 1. It should be taken
into account that the ππ is the sum of π+π− and
π0π0 final state. Isospin predicts that the π0π0
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χc0 χc2

Mass 3414.75 ± 0.31 MeV 3556.20 ± 0.09 MeV
Width 10.4± 0.6 MeV 1.97 ± 0.11 MeV

Final state 103 BR 1010 G0[MeV−5/2] 103 BR 1010G2[MeV−5/2]
ππ 8.5± 0.4 3.15 ± 0.07 2.42± 0.13 3.04 ± 0.08

K+K− 6.06 ± 0.35 3.45 ± 0.10 1.09± 0.08 2.74 ± 0.10
K0

SK
0
S 3.15 ± 0.18 3.52 ± 0.10 0.58± 0.05 2.83 ± 0.12

ηη 3.03 ± 0.21 2.48 ± 0.09 0.59± 0.05 2.06 ± 0.09
η′η′ 2.02 ± 0.22 2.43 ± 0.13 < 0.11 < 1.2

Table 1. The Experimental results for the decays χc0, χc2 → PP and the resulting factors corrected for
the known m2 effects.

is half the π+π− state and the data that go into
the PDG average are compatible with this. We
thus need to multiply it by 2/3 to get the π+π−

result. Similarly, the K0
SK

0
S final state is half of

the K0K0 final state. Here we need to multiply
by two to obtain the full final state.

One question is how we deal with factors
of m2

P that we know are present. We include
the phase space correction and note that for
χc0 the amplitude always contains p1 · p2 =
(m2

χ − 2m2
P )/2. The phase space contains the

factor |p1| =
√

m2
χ − 4m2

P /2. For the decays of

the scalar we thus define

G0 =
√

BR/|p1|/(p1.p2) . (8)

The same question arises for the χc2. Here the
amplitude must always contain χµν

2 p1µp2ν . The
field χµν

2 must be replaced by its polarization
tensor T µν

χ and the amplitude squared and av-
eraged over. The formula to perform such a sum
is

∑

polarizations

T µνT ∗αβ =
1

2

(

KµαKνβ +KµβKνα

−2

3
KµνKαβ

)

(9)

where Kµν = −gµν + qµqν/m2
χ and qµ is the

four-momentum of the χc2 particle. The contri-
bution thus always contains a factor

1

5

∑

pol

T µν
χ p1µp2νT

∗αβ
χ p1αp2β =

1

30

(

m2
χ − 4m2

P

)2
.

(10)
Alternatively we can choose the final state con-
figuration with p1 = (EP , 0, 0, |p1|) and p2 =
(EP , 0, 0,−|p1|) and choose an explicit set of

five orthogonal polarization tensors satisfying
pµχTχµν = 0, T µ

χµ = 0, Tχµν = Tχνµ and

T
(a)
χµνT

∗(b)µν
χ = δab which shows that the ampli-

tude squared always contains a |p1|4. We thus
define a normalized factor also for the χc2 de-
cays via

G2 =
√

BR/|p1|/|p1|2 . (11)

Looking at the columns G0 and G2 for the
decays to pions and kaons we see indeed that
SU(3)V breaking is somewhat smaller than usual,
about 10% for both χc0 and χc2 decays. For the
decays to ηη we get a decent agreement in both
cases but the3 η′η′ is not so good for the χc2

decay.

5 Conclusions

In this letter we have calculated the chiral log-
aritms for the decays χc0, χc2 to two light pseu-
doscalars. We have found that they vanish and
that this is a general result for all such decays
of heavy chiral singlet states of spin 0 and 2.
We checked our result against the known result
for the energy momentum tensor in ChPT and
showed using the example of the scalar formfac-
tors that the chiral logarithms do not vanish at
high q2 in all cases.

Our result implies that the SU(3)V correc-
tions are expected to be “small” in these de-
cays and we have compared our results with the
available experimental data and find that the
corrections are reasonably small.

3 The arguments given in this paper are only ap-
plicable to the η′ in the large Nc limit where this
state also becomes a pseudo Goldstone boson.
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