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Abstract. Single diffractive Drell-Yan reaction in hadron-hadron collisions is considered as
an important source of information on the properties of soft QCD interactions. In particular,
it provides an access to the dynamics of the QCD factorisation breaking due to the interplay
between hard and soft interactions which leads to a nontrivial energy and scale dependence of
the Drell-Yan observables. We study the process at forward rapidities in high energy proton-
(anti)proton collisions in the color dipole approach. Predictions for the total and differential
cross sections of the diffractive lepton pair production are given at different energies.

1. Introduction

Diffractive large rapidity gap processes in QCD constitute a noticeable fraction of all observed
events. Depending on energy, it may vary from a fraction of percent in pp up to 10 % and more
in ep scattering. Generally, such processes are very sensitive to the soft and nonperturbative
interactions despite the presence of a hard scale, which makes them extremely difficult to
investigate from both the theoretical QCD and experimental points of view, and intrinsic
uncertainties of existing phenomenological models are still quite large.

Diffractive Drell-Yan process at forward rapidities [1], as well as diffractive heavy flavor
production [2], is one of such processes, which give us an immediate access to soft QCD evolution
close to saturation regime. The understanding of the mechanisms of inelastic diffraction came
with the pioneering works of Glauber [3], Feinberg and Pomeranchuk [4], Good and Walker
[5]. If the incoming plane wave contains components interacting differently with the target, the
outgoing wave will have a different composition, i.e. besides elastic scattering a new diffractive

state will be created (for a detailed review on QCD diffraction, see Ref. [6]). In our case, such
a new state is given by the deeply virtual photon radiation in the forward direction, which then
can be seen as e.g. heavy µ+µ− pair in a detector.

The single-diffractive Drell-Yan reaction in pp collisions is characterized by a relatively small
momentum transfer between the colliding protons, such that one of them, e.g. p1, radiates a
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hard virtual photon k2 = M2 ≫ m2
p and hadronizes into a hadronic system X both moving

in forward direction and separated by a large rapidity gap from the second proton p2, which
remains intact, i.e.

p1 + p2 → γ∗(l+l−) +X + (gap) + p2 (1)

Both the di-lepton and X stay in the forward fragmentation region. In this case, the virtual
photon is predominantly emitted by the valence quarks of the proton p1. We will refer to this
as the diffractive Drell-Yan process at forward rapidities.

The dipole approach, previously applied to diffractive Drell-Yan reaction in Ref. [1], led to the
QCD factorisation breaking, which manifests itself in specific features like a significant damping
of the cross section at high

√
s compared to the inclusive DY case. This is rather unusual, since

a diffractive cross section, which is proportional to the dipole cross section squared, could be
expected to rise with energy steeper than the total inclusive cross section, like it occurs in the
diffractive DIS process. At the same time, the ratio of the DDY to DY cross sections was found
in Ref. [1] to rise with the hard scale, M2. This is also in variance with diffraction in DIS, which
is associated with the soft interactions [7].

Long-range soft interactions between target and projectile particles, or the absorptive

corrections affect differently the diagonal and off-diagonal terms in the hadronic current [8], in
opposite directions, leading to an unavoidable breakdown of the QCD factorisation in processes
with off-diagonal contributions only. Namely, the absorptive corrections enhance the diagonal
terms at larger

√
s, whereas they strongly suppress the off-diagonal ones. In the diffractive

DY process a new state, the heavy lepton pair, is produced, hence, the whole process is of
entirely off-diagonal nature, whereas in the diffractive DIS contains both diagonal and off-
diagonal contributions [6].

Another reason of the QCD factorisation breaking is more specific and concerns the interplay
of soft and hard interactions in the DDY amplitude. In particular, this leads to the leading
twist nature of the DDY process, whereas DDIS is of the higher twist [1]. Large and small
size projectile fluctuations contribute to the diffractive DY process at the same footing, which
further deepens the dramatic breakdown of the QCD factorisation in DDY. This work is devoted
to a detailed study of consequences of such a breakdown in typical DY observables.

2. Diffractive Drell-Yan in dipole-target scattering

The hard part of the Drell-Yan process is given by the inelastic amplitude of γ∗ radiation by a
projectile quark (valence or sea) due to its interaction with the target through a gluon exchange
as shown in Fig. 1. It consists of two terms corresponding to interaction of two different Fock
states with the target – a bare quark before the photon emission |q〉 (s-channel diagram), and a
quark accompanied by a Weizäcker-Williams photon |qγ∗〉 (u-channel diagram).

Elastic dipole scattering depicted in Fig. 1 corresponds to forward scattering at small
momentum transfers in the t-channel1. In the leading order, the elastic scattering amplitude
is given by one-loop diagram with two t-channel gluon exchanges. For on-shell intermediate
spectators, corresponding four-dimensional loop integral can be reduced to two-dimensional one
over the transverse momentum of one of the gluons

2iImFel(~δ⊥) =

∫

d2k⊥
(2π)2

A(~k⊥)A(~δ⊥ − ~k⊥), ~δ⊥ ≪ |~k⊥| (2)

where A represents (inelastic) amplitude for one t-channel gluon exchange, and the last strong
inequality guarantees that the proton target survives the scattering, hence, the elastic nature of

1 Generally speaking,
√
−t → ΛQCD corresponds to the physical forward scattering limit since transverse

momentum of a proton in the final state cannot be resolved to a better accuracy than its inverse size.



σqq(~r1 − ~r2)

~r1 − ~r2 + α~r~r1 − ~r2

γ∗

2

1

σqq(~r1 − ~r2 + α~r)

~r1 − ~r2 + α~r~r1 − ~r2

γ∗

Figure 1. Leading order contribution to the diffractive Drell-Yan in the dipole-target collision.

the process. Then the convolution theorem of Fourier analysis leads to the optical theorem

ImFel(~δ) =

∫

d2b e−i~δ⊥·~b Im fel(~b), 2iIm fel(~b) = |Ã(~b)|2 (3)

In the case of multiple elastic rescattering, this relation leads to eikonalization of the bare elastic
amplitude which then correctly takes into account gap survival effects. However, if one uses the
elastic amplitude fel fitted to soft data, it must already contain the soft unitarity corrections,
and one should include them twice as is sometimes done in the literature.

Straightforward calculations lead to q̄q dipole scattering amplitudes for s and u-channel
photon emission, respectively,

M
(1)s
q̄q (~b,~rp, ~r, α) = −2ip0i

√
4π

√
1− α

α2
Ψµ

γ∗q(α,~r)

× 1

Nc

∑

X

∑

cf ci

(

|Vq(~b)− Vq(~b+ ~rp)|2 − |Vq(~b+ ~rp)|2
)

,

M
(1)u
q̄q (~b,~rp, ~r, α) = 2ip0i

√
4π

√
1− α

α2
Ψµ

γ∗q(α,~r)

× 1

Nc

∑

X

∑

cf ci

(

|Vq(~b)− Vq(~b+ ~rp + α~r)|2 − |Vq(~b+ ~rp + α~r)|2
)

,

where the last terms subtract the contributions from diagrams corresponding to the situation
when none of the gluons couple to the same quark line with the hard photon. Then, implied the
fact that all fields disappear at infinite separations, i.e. Vq(~b) → 0 when |~b| → ∞, we have due
to antisymmetry of the integrand

∫

d2b e−i~δ⊥·~b
[

|Vq(~b+ ~rp)|2n − |Vq(~b+ ~rp + α~r)|2n
]

→ 0, n ≥ 1 , |~δ⊥| → 0 , (4)

such that these terms do not contribute to the final result. Using the optical theorem for the
elastic amplitude

2i Im fel(~b,~rp) =
i

Nc

∑

X

∑

cfci

|Vq(~b)− Vq(~b+ ~rp)|2,

we can finally write

M
(1)
q̄q (~b,~rp, ~r, α) = −2ip0i

√
4π

√
1− α

α2
Ψµ

γ∗q(α,~r)
[

2Im fel(~b, ~rp)− 2Im fel(~b,~rp + α~r)
]

(5)



i.e. the amplitude of the diffractive radiation is proportional to the difference between elastic
amplitudes of the two Fock components, with and without the photon radiation. When a quark
fluctuates into the upper Fock quark-photon state with the transverse separation ~r, the final
quark gets a transverse shift ∆~r = α~r. Then the quark dipoles with different sizes in the |2q〉
and |2qγ∗〉 components interact differently, and their difference corresponds to the diffractive
Drell-Yan amplitude (5).

3. Diffractive Drell-Yan in proton-proton scattering

In the dipole picture, the typical enhanced Regge graphs correspond to elastic scattering of
higher Fock states, which contain gluons, e.g. |qqg〉, |qqgg〉, etc. Note that in our approach
we take into account the lowest Fock state |qq〉 contribution only. Such an approximation is
justified for not very small fraction xγ1 = p+γ /p

+
1 and scale M2, where valence/sea quarks are

dominated and the gluon contribution is rather small.
The total hadronic amplitude of the diffractive Drell-Yan process can be written as [1]

Aif = A
(1)
if +A

(2)
if +A

(3)
if , (6)

where each term corresponds to γ∗ radiation by one of the valence (sea) quarks in the proton,
in particular,

A
(1)
if (xγ1, ~q⊥, λγ) =

i

4
α2

∫

d2r1d
2r2d

2r3d
2rd2bdxq1dxq2dxq3

× Ψi(~r1, ~r2, ~r3;xq1 , xq2 , xq3)Ψ
∗

f (~r1 + α~r,~r2, ~r3;xq1 − xγ1, xq2 , xq3)

×
[

M
λγ

q̄q (~b,~r1 − ~r2, ~r, α) +M
λγ

q̄q (~b,~r1 − ~r3, ~r, α)
]

ei
~l⊥·α~rei

~δ⊥·~b (7)

Here, λγ = L, T ; ~l⊥ = ~δ⊥ − ~q⊥/α (z-axis is directed along initial proton momentum); the hard
photon with virtuality q2 = M2 ≫ m2

p, transverse ~q⊥ and fractional longitudinal xγ1 momenta
is emitted from the first valence quark with impact parameter ~r1, other two valence quarks in
the proton have impact parameters ~r2 and ~r3, respectively; ~r is transverse separation between
the photon and the radiating quark; α = xγ1/xq1 is the fraction of longitudinal momenta taken

away by the photon from the radiating quark; ML,T
q̄q are the Fourier-transformed amplitudes for

the elastic quark dipole scattering off the proton target accompanied by the hard L, T -polarized
photon emission; Ψi,f are the light-cone wave functions of the 3q systems in the initial and final
state, respectively. In Eq. (7) we implicitly assumed that exchanges t-channel gluons all together
take a negligibly small longitudinal momentum compared to the collisions energy

√
s and, hence,

corrections to quark momenta due to gluon couplings are neglected in the wave functions.
The differential cross section for the single diffractive di-lepton production in the target rest

frame reads

d 8σsd
λγ
(pp → pl+l−X) =

∑

f

3
∑

n=1

|A(n)
if (xγ1, ~q⊥, λγ)|2

dα

α(1 − α)

d2q⊥d
2δ⊥

(2π)5 8(p0i,n)
2

× αemǫµ(λγ)ǫ
∗

ν(λγ)L
µν dM2dΩ

16π2M4
, λγ = L, T (8)

where prefactors provide averaging over colors and helicities of exchanged t-channel gluons, p0i,n
is the energy of the radiating nth quark in the initial state, n = 1, ..., 3; αem = e2/(4π) = 1/137
is the electromagnetic coupling constant. The second line in Eq.(8) describes decay of γ∗ into the
leptonic pair l+l− into solid angle dΩ = dφd cos θ, and Lµν is the standard leptonic tensor. We
keep in the cross section only diagonal in the photon polarization λγ = L, T terms (non-diagonal



ones drop out after integration over leptonic azimuthal angle φ). Integrating the diffractive
differential DY cross section over the photon transverse momentum ~q⊥ we get

d4σL,T (pp → pl+l−X)

d lnα dM2 d2δ⊥
=

αem

3πM2

d3σL,T (pp → pγ∗X)

d lnαd2δ⊥
. (9)

Then applying the completeness relation
∑

f

Ψf (~r1 + α~r,~r2, ~r3;xq1 , xq2 , xq3)Ψ
∗

f (~r
′

1 + α~r ′, ~r ′

2, ~r
′

3;x
′

q1 , x
′

q2 , x
′

q3)

= δ(~r1 − ~r ′

1 + α(~r − ~r ′))δ(~r2 − ~r ′

2)δ(~r3 − ~r ′

3)
3
∏

j=1

δ(xqj − x′qj) (10)

we get the diffractive γ∗ production cross section in the following differential form

d3σλγ
(pp → pγ∗X)

d lnαd2δ⊥
=

∑

q Z
2
q

64π2

∫

d2r1d
2r2d

2r3d
2r d2bd2b′ dxq1dxq2dxq3

× |Ψ̃λγ

γ∗q(α,~r)|2|Ψi(~r1, ~r2, ~r3;xq1 , xq2 , xq3)|2

×∆(~r1, ~r2, ~r3;~b;~r, α)∆(~r1, ~r2, ~r3;~b
′;~r, α) ei

~δ⊥ ·(~b−~b ′) (11)

where Ψ̃γ∗q = Ψγ∗q/Zq, and

∆ = −2Im fKST
el (~b,~r1 − ~r2) + 2Im fKST

el (~b,~r1 − ~r2 + α~r)

−2Im fKST
el (~b,~r1 − ~r3) + 2Im fKST

el (~b,~r1 − ~r3 + α~r) , (12)

where the Kopeliovich-Schäfer-Tarasov (KST) parameterization of the elastic dipole-target

amplitude fitted to the soft data [9, 10, 11] and, hence, valid at |~ri − ~rj| ∼ ~b, i 6= j is used.

Finally, going over to the forward limit ~δ⊥ = 0 we obtain

d3σλγ
(pp → pγ∗X)

d lnα dδ2
⊥

∣

∣

∣

δ⊥=0
=

∑

q Z
2
q

64π

∫

d2r1d
2r2d

2r3d
2r dxq1dxq2dxq3

× |Ψ̃λγ

γ∗q(α,~r)|2|Ψi(~r1, ~r2, ~r3;xq1 , xq2 , xq3)|2
[
∫

d2b∆(~r1, ~r2, ~r3;~b;~r, α)

]2

(13)

We see that normalization of the cross section agrees with the original result of Ref. [1]. The
total diffractive cross section is then given by

dσ(pp → pγ∗X)

d lnα
=

1

BDY
sd (s)

d3σ(pp → pγ∗X)

d lnα dδ2
⊥

∣

∣

∣

δ⊥=0
(14)

where BDY
sd (s) is the diffractive slope similar to the one measured in diffractive DIS.

The next step is to introduce the proton wave function assuming the Gaussian shape for the
quark distributions in the proton as

|Ψi(~r1, ~r2, ~r3;xq1 , xq2 , xq3)|2 =
2 + a/b

π2ab
exp

[

− r21
a

− r22 + r23
b

]

ρ(xq1 , xq2 , xq3)

× δ(~r1 + ~r2 + ~r3)δ(1 − xq1 − xq2 − xq3) (15)

where a = 〈r2q̄q〉 and b = 〈R2
q〉 are the diquark mean radius squared and the quark mean distance

from the diquark squared, respectively. In this work, we will use the simplest case of symmetric
valence quarks distribution assuming that rq̄q = Rq = 0.85 fm.



Then valence quark distribution in the proton is given by

∫

dxq2dxq3ρ(xq1 , xq2 , xq3) = ρq1(xq1) .

where we integrated out the longitudinal fractions of the diquark in the proton. Generalization
of the three-body proton wave function (15) including different quark and antiquark flavors, as
well as sea quarks, leads to the proton structure function [12]

∑

q

Z2
q [ρq(xq) + ρq̄(xq)] =

1

xq
F2(xq), xq =

xγ1
α

. (16)

4. Numerical results for differential DDY cross sections

In Fig. 2 the ratio of the diffractive to inclusive DY cross sections is plotted as a function of
di-lepton invariant mass squared M2 (left panel) and photon fractional light-cone momentum
xγ1 (right panel) at different energies. In the left panel, the curves are given for fixed xγ1 = 0.5
(solid lines) and xγ1 = 0.9 (dashed lines). In the right panel, the curves are given for fixed
M2 = 50GeV2 (solid lines) and M2 = 500GeV2 for

√
s = 14 TeV and 500 GeV, and

M2 = 200GeV2 at
√
s = 40 GeV (dashed lines). The pairs of solid/dashed curves in the

both panels correspond to
√
s = 40GeV, 500 GeV and 14 TeV from top to bottom, respectively.

Here we used the KST parameterization for the dipole-target scattering amplitude [10, 9, 11]
and F2 parameterization by Cudell and Soyez [13] are used here. In this calculation we consider
the unpolarized case summing up the contributions of longitudinal and transverse parts both in
the diffractive and inclusive cross sections.

0 200 400 600 800 1000
M2, GeV2

0.50

0.20

0.10

0.05

0.02

0.01

dΣDDY � dxΓ1 dM2

dΣDY � dxΓ1 dM2

1.000.500.30 0.70
xΓ1

0.50

0.20

0.10

0.05

0.02

0.01

dΣDDY � dxΓ1 dM2

dΣDY � dxΓ1 dM2

Figure 2. The ratio of the diffractive to inclusive Drell-Yan cross sections as function of the lepton-pair
invariant mass squared M2 (left panel) and photon fraction xγ1 (right panel) at different energies.

As seen from Fig. 2, the DDY-to-DY cross section ratio is falling with energy. However,
naively one could expect basing on QCD factorisation, that the DDY cross section, which is
proportional to the dipole cross section squared, should rise with energy steeper than the total
inclusive cross section. At the same time, the ratio rises with the hard scale of the process, M2.
This also looks counterintuitive, since diffraction is usually associated with soft interactions [14].
These effects are different from ones emerging in Regge factorisation-based calculations, where
we observe a slow rise of the DDY-to-DY cross section ratio with c.m.s. energy and its practical
independence on the hard scale of the process M2 [15].

In order to understand such an interesting behavior of the DDY-to-DY cross sections ratio
obtained in the color dipole approach, let us look at the amplitude of the DDY process, which



is proportional to the difference between the dipole cross sections of the Fock states with and
without the hard photon emission [1], i.e.

MDDY ∼ σ(~R)− σ(~R − α~r) =
2ασ0
R2

0(x)
eR

2/R2

0
(x)

(

~r · ~R
)

+ h.o. (17)

assuming the simplest Golec-Biernat-Wusthoff (GBW) slope for the dipole cross section [16], and
the hardness of the emitted photon implies r ∼ 1/M ≪ R0(x). We see now that the diffractive
DY amplitude is linear in r, so the diffractive cross section turns out to be a quadratic function of
r, which is different from e.g. the diffractive DIS process where the cross section is proportional
to r4 and is dominated by soft fluctuations (see e.g. Refs. [6, 7]). Since the diffractive DY cross
section is proportional to r2, then soft and hard interactions contribute on the same footing [1],
which is one of the basic sources of the QCD factorisation breaking in diffractive DY process.

0 200 400 600 800 1000
M2, GeV20.01

0.1

1

10

100

1000
dΣDDY� dxΓ1dM2, fb

s =500 GeV

1.000.500.30 0.70
xΓ10.01

0.1

1

10

100

dΣDDY� dxΓ1dM2, fb
s =500 GeV

Figure 3. Diffractive Drell-Yan cross section (in fb) as function of the lepton-pair invariant mass
squared M2 (left panel) and photon fraction xγ1 (right panel) at the RHIC II c.m.s. energy

√
s = 500

GeV.

We also compare predictions for the diffractive DY cross section for different
parameterizations for elastic dipole-target scattering amplitude corresponding to scattering of
small (GBW given by Refs. [16, 9, 17]) and large (KST given by Refs. [9, 10, 11]) dipoles. As an
example, in Fig. 3 we present the diffractive Drell-Yan cross section as function of the lepton-
pair invariant mass squared M2 (left panel) and photon fraction xγ1 (right panel) at the RHIC
II c.m.s. energy

√
s = 500 GeV. We notice that the GBW parameterization leads to roughly

a factor of two smaller cross section than the one obtained with the KST parameterization,
however, both of them exhibit basically the same xγ1 and M2 shapes. It means that the
evolution of the dipole size can only affect the overall normalization of the DDY cross section.
Since arguments in the elastic amplitude fel(~rp,~b), the impact distance between the target and
the projectile b and the transverse distance between projectile quarks rp ∼ |~ri − ~rj|, i 6= j, are
of the same order and given at the soft hadronic scale, then the use of KST parameterization
fitted to the soft hadron scattering data data is justified in the case of diffractive DY.

5. Conclusion

The QCD factorisation breaking effects in the diffractive Drell-Yan process lead to quite
different properties of the corresponding observables with respect to QCD factorisation-based
calculations. A quark cannot diffractively radiate a photon in the forward direction, whereas
a hadron can due to the presence of transverse motion of spectator quarks in the projectile
hadron. For this reason, the diffractive DY cross section depends on the hadronic size explicitly
breaking the QCD factorisation.



This leads to the physical picture where hard and soft interactions are equally important
for DY diffraction, and their relative contributions are independent of the hard scale, like in
the inclusive DY process. This is a result of the specific property of DY diffraction: its cross
section is a linear, rather than quadratic function of the dipole cross section. On the contrary,
diffractive DIS is predominantly a soft process, because its cross section is proportional to the
dipole cross section squared.

Contrary to what follows from the calculations based on QCD factorisation, the ratio of the
diffractive to inclusive cross sections falls with energy, but rises with the di-lepton effective mass
M . This happens due to the saturated behavior of the dipole cross section which levels off at
large separations. All these properties are different from those in the diffractive DIS process,
where QCD factorisation is exact. In addition, we made predictions for the differential (in
photon fractional momentum xγ1 and di-lepton invariant mass squared M2) cross sections for
the diffractive DY process at the energies of RHIC (500 GeV) and LHC (14 TeV).
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