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Abstract

We use three-flavour hard pion Chiral Perturbation Theory (HPChPT) in both
the heavy meson and a relativistic formulation to calculate the chiral logarithms
m2 log

(

m2/µ2
)

contributing to the formfactors of the B(s) → π,K, η and D(s) →
π,K, η transitions at momentum transfer q2 away from the endpoint q2max = (mB −
mM )2. We compare our results with CLEO D → π and D → K data. We also
calculate the Isgur-Wise function of theB(s) → D(s) semileptonic decay away from the
endpoint and the chiral logarithms for the pion and kaon electromagnetic formfactor.

In two-flavour HPChPT we calculate the chiral logarithms for the pion vector
and the scalar formfactors at s ≫ m2

π. This allows us to test hard pion ChPT using
the existing two-loop calculations for these quantities.
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1 Introduction

As a result of the rapid progress in computer technology, simulations of full QCD on the
lattice are becoming increasingly feasible and thus many results are now available. To
improve their precision it is important to acquire control on all the sources of systematic
errors involved. One of them is due to the fact that most simulations are done with
meson masses larger then the physical ones. It is therefore essential to perform a chiral
extrapolation of the lattice data points to achieve smaller meson masses.

In this respect Chiral Perturbation Theory (ChPT) [1, 2, 3], the effective field theory of
QCD at low energy, plays a key role. This theory can predict the dependence on the light
quark masses of the observables under study, via a systematic expansion in the masses
and momenta of the light mesons using both the spontaneous and explicit breaking of
chiral symmetry. Unfortunately ChPT is often limited by its range of validity. There exist
several processes where it is applicable only in a small fraction of the allowed range of
energy, while the extrapolations formulas are needed elsewhere. It is the case for example
of the K → π, D → π,K, η and B → π,K, η transition formfactors in e.g. semileptonic
decays. These processes are very important for the determination of CKMmatrix elements,
obtained combining knowledge on the amplitudes from experiments [4, 5, 6, 7] and the
formfactors calculated on the lattice [8]. The matching between lattice and experimental
data is done when the momentum transfer squared to the vector boson is small, i.e. when
a hard external pion arises and thus the power counting scheme of ChPT breaks down.
However it is possible to exploit the chiral symmetry of QCD even there and predict the
dependence on the meson masses of the formfactors using the arguments of hard pion
Chiral Perturbation Theory (HPChPT).

This was first studied in [9] where it was applied to the semileptonic decay K → π
using two-flavour ChPT. They argued there that it is possible to calculate the corrections
of the type m2

π logm
2
π/µ

2 even when the squared momentum transfer q2 is very small, i.e.
when the outgoing pion is hard. Their arguments are based on the fact that only the
soft internal pions are responsible for the chiral logarithms. These ideas have then been
generalized and applied to K → ππ [10] and to B → πℓνℓ [11], always in the framework of
two-flavour ChPT. In [10, 11] it was made clear that the underlying arguments correspond
basically to separate the hard-structure of a Feynman diagram from the soft one and use
this last one to calculate infrared singularities. The arguments are essentially the same as
those used for photon infrared singularities.

In this paper we use two-flavour HPChPT for the vector and the scalar formfactors
of the pion F π

V (s) and F π
S (s) at s ≫ m2

π. Our main interest in this calculation is that it
allows a test of the arguments of HPChPT using the existing two-loop results in standard
two-flavour ChPT [12]. For completeness we also quote the three-flavour HPChPT results
for the electromagnetic formfactor for pions and kaons.

The main new result of this work is the three-flavour HPChPT calculation of the
transition formfactors in vector transitions of B and D to π,K and η and the Isgur-
Wise function in B to D transitions. In the latter case, the calculations did exist and
has been used but the validity of the formulas was not discussed. Our results improve
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the comparison between the measured D → π and D → K formfactors [4]. We also
calculate the contributions at the endpoint for all these transitions where the results for
the transitions to η are new.

The paper is organized as follows. In Sect. 2 we briefly review ChPT and heavy meson
ChPT (HMChPT). We present the relativistic theory that has been used to have an extra
check of the correctness of our results here as well. At the end of this section we also
summarize the arguments why HPChPT works, although we refer the reader for further
details to Sect. 5 of [11].

In Sect. 3 we present the results for pion and kaon formfactors and test HPChPT using
the existing two-flavour two-loop calculations for the pion formfactors. In Sect. 4 we define
the formfactors of the heavy to light transitions and present our results for them. We
also show here the comparison with the experimental data from [4] on the D → π(K)
transitions . The B → D transitions are defined and our results for them given in Sect. 5.
In the appendix we provide some results for the needed expansions of the loop integrals.

2 Chiral Perturbation Theory

2.1 Standard Chiral Perturbation Theory

In this subsection we briefly describe the formalism of ChPT [1, 2, 3] for both two- and
three-flavour ChPT. The notation in the following is the same as in [13]. The lowest order
Lagrangian describing the strong interactions of the light mesons is

L(2)
ππ =

F 2

4
(〈uµu

µ〉+ 〈χ+〉) , (1)

with

uµ = i{u†(∂µ − irµ)u− u(∂µ − ilµ)u
†} ,

χ± = u†χu† ± uχ†u ,

u = exp

(

i√
2F

φ

)

,

χ = 2B(s+ ip) .

u parametrizes the oscillations around the vacuum in SU(n)L×SU(n)R/SU(n)V ∼ SU(n)
for n = 2, 3 the number of light flavours. φ is thus a hermitian n× n matrix:

φ =







1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η






, φ =

(

1√
2
π0 π+

π− − 1√
2
π0

)

. (2)

The fields s, p, lµ = vµ−aµ and rµ = vµ+aµ are the standard external scalar, pseudoscalar,
left- and right-handed vector fields introduced by Gasser and Leutwyler [2, 3]. We will use
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the symbol F throughout this paper but it should be kept in mind that F can be either
the two-flavour constant called F in [2] or the three-flavour one called F0 in [3].

The field u and uµ transform under a chiral transformation gL×gR ∈ SU(n)L×SU(n)R
as

u −→ gRuh
† = hug†L, uµ −→ huµh

†. (3)

In (3) h depends on u, gL and gR and is the so called compensator field. The notation 〈X〉
stands for trace over up,down quark indices for n = 2 and up, down, strange for n = 3.

Starting from this Lagrangian we can then build an effective field theory by including
loop diagrams and higher order Lagrangians. Introductions to ChPT can be found in
[14, 15].

2.2 Heavy meson Chiral Perturbation Theory

In this subsection we briefly describe the formalism of HMChPT [16, 17, 18]. Longer
introductions can be found in the lectures by Wise [19] and the book [20].

The combination of Heavy Quark Effective Theory and of ChPT provides us with a
powerful formalism to study hadrons containing a heavy quark. This combination is called
HMChPT. It makes use of both spontaneously broken SU(n)L × SU(n)R chiral symmetry
on the light quarks, and spin-flavour symmetry on the heavy quarks. Thus HMChPT
involves both a heavy and a light scale. The first one is the heavy meson mass and rules an
expansion in powers of its inverse. The second is the light meson mass that lets us study
chiral symmetry breaking effects in a chiral-loop fashion as in standard ChPT.

The sector of the Lagrangian involving only light-quarks has already been discussed
above. We now present the heavy meson part of the HMChPT Lagrangian for the three-
flavour case [16, 17, 18]. Hereafter we concentrate on the B(∗) mesons, but the same
equations hold for the D(∗) mesons as well. In the limit mb → ∞, the pseudoscalar, B,
and the vector, B∗, mesons are degenerate. All results in this paper are in the leading
order in the heavy quark expansion. Thus in the following we neglect the mass splitting
∆ = mB∗ −mB. To implement the heavy quark symmetries it is convenient to assemble
them into a single field

Ha(v) =
1 + v/

2

[

B∗
aµ(v)γ

µ −Ba(v)γ5
]

, (4)

where v is the fixed four-velocity of the heavy meson, a is a flavour index corresponding
to the light quark in the heavy meson. Therefore B1 = B+, B2 = B0, B3 = Bs, while
D1 = D0, D2 = D−, D3 = Ds and similarly for the vector mesons B∗

µ and D∗
µ. In (4)

the operator (1 + v/)/2 projects out the particle component of the heavy meson only. The
conjugate field is defined as Ha(v) ≡ γ0H

†
a(v)γ0. We assume the field Ha(v) to transform

under the chiral transformation gL × gR ∈ SU(n)L × SU(n)R as

Ha(v) −→ habHb(v) , (5)
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so we introduce the covariant derivative

Dµ
abHb(v) = δab∂

µHb(v) + Γµ
abHb(v), (6)

where Γµ
ab = 1

2

[

u† (∂µ − irµ) u+ u (∂µ − ilµ) u
†]

ab
, and the indices a, b run over the light

quark flavours. Finally, the Lagrangian for the heavy-light mesons in the static heavy
quark limit reads

Lheavy = −iTr
[

Hav ·DabHb

]

+ gTr
[

Hau
µ
abHbγµγ5

]

, (7)

where g is the coupling of the heavy meson doublet to the Goldstone boson and the traces,
Tr, are over spin indices, the γ-matrix indices. The Lagrangian (7) satisfies chiral symmetry
and heavy quark spin flavour symmetry. We neglect in the following the mass differences
for the heavy mesons containing the same heavy quark.

2.3 Relativistic theory

When the momentum transfer to the light degrees of freedom is not small as in HPChPT,
very off-shell heavy mesons may appear in the loops. Different treatments of the off-
shell behaviour modify the loop-functions. Thus in principle it might change the non-
analyticities in the light meson masses. If this were the case, the arguments summarized in
Sect. 2.4 would be wrong. In fact, provided that the two formalisms are both sufficiently
complete, the soft singularities must be the same, since they are arising in the same way.
This is the reason why both here and in [11] we are calculating not only using HMChPT
but also in a relativistic formulation as a check on the arguments.

We use a relativistic Lagrangian that respects the spin-flavour symmetries of HMChPT.
It is essentially the same Lagrangian introduced in [11], but now in the three-flavour case.
The Ba and B∗

aµ fields are in the relativistic form and we treat them as column-vectors in
the light-flavour index a.

Lkin = ∇µB†∇µB −m2
BB

†B − 1

2
B∗†

µνB
∗µν +m2

BB
∗†
µ B∗µ, (8)

Lint = gM0

(

B†uµB∗
µ +B∗†

µ uµB
)

+
g

2
ǫµναβ

(

−B∗†
µ uα∇µB

∗
β +∇µB

∗†
ν uαB

∗
β

)

, (9)

with B∗
µν = ∇µB

∗
ν −∇νB

∗
µ, and ∇µ = ∂µ+Γµ. The constant g of (9) is the same in (7), M0

is the mass of the B meson in the chiral limit. The fields B and B∗ transform under chiral
transformations as B → hB. The two terms of Lint in (9) contain the vertices BB∗M and
B∗B∗M for M = π,K, η.

From Lkin in (8) we find the propagators of the B and B∗ meson respectively:

i

p2 −m2
B

,
−i
(

gµν − pµpν
m2

B

)

p2 −m2
B

. (10)

This is to be contrasted with the propagator 1/v · p in the HMChPT showing the different
off-shell behavior.
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2.4 Hard pion Chiral Perturbation Theory

In general, the use of ChPT and HMChPT is valid as long as the interacting light mesons
are soft, i.e. if they have momenta much smaller than the scale of spontaneous chiral
symmetry breaking (ΛChSB ≃ 1 GeV). Only in this regime is the power counting of ChPT
well defined.

On the other hand the arguments presented in great detail in Sect. 5 of [11] show that
the predictions of the soft singularities in the light meson masses appearing in the final
amplitudes are reliable even outside the range of applicability of HMChPT. Hereafter we
present a short summary of these arguments, but for a comprehensive discussion we refer
the reader to Sect. 5 of [11].

The underlying idea is that in a loop diagram, the internal soft light mesons are the
source of the infrared non-analyticities arising, even if hard, i.e. large momentum, light
mesons are present. Since the soft lines do not see the hard or short-distance structure of
the diagram, we can separate them from the rest of the process. We should thus be able to
describe the hard part of any diagram by an effective Lagrangian which must include the
most general terms consistent with all the symmetries. The coefficients of this Lagrangian
depend on the hard kinematical quantities and can even be complex. This Lagrangian must
be sufficiently complete to describe the neighbourhood of the underlying hard process.

Extra caution must be taken to build up the Lagrangian describing the hard part. As
a matter of fact we can not neglect operators with an arbitrary numbers of derivatives
since the momenta into play can be large. However it turns out that matrix elements of
operators with higher number of derivatives are all proportional to the lowest order ones up
to terms of higher order, i.e. the coefficients of the leading non-analyticities are calculable
in terms of the lowest order Lagrangians.

We expect that a full power counting can be formulated along the lines of SCET [21]
but the leading prediction can be obtained in the simpler fashion done here.

3 Pion and kaon formfactors

3.1 Electromagnetic formfactors in three-flavour HPChPT

The vector (electromagnetic) formfactors of the charged pion and kaon are defined as

〈

π(K)+(p2)
∣

∣jelmµ

∣

∣ π(K)+(p1)
〉

= (p2 + p1)µF
π(K)
V (s), (11)

with s = (p1− p2)
2 and jelmµ = 2

3
ūγµu− 1

3
d̄γµd− 1

3
s̄γµs is the electromagnetic current. The

arguments of HPChPT can be used here as well and we get from the relevant one-loop
diagrams and wave function renormalization that

F π
V (s) = F πχ

V (s)

(

1 +
1

F 2
A(m2

π) +
1

2F 2
A(m2

K) +O(m2
L)

)

,

FK
V (s) = FKχ

V (s)

(

1 +
1

2F 2
A(m2

π) +
1

F 2
A(m2

K) +O(m2
L)

)

. (12)
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The superscript χ here means in the limit mu = md = ms = 0. In the remainder we will
usually drop the O(m2

L) part but all results should be interpreted as up to analytic terms
in the light meson masses squared. The loop integral A(m2) is defined in the appendix.
The result (12) can be calculated directly or by expanding the known ChPT result [22, 23]
for s ≫ m2

L.

3.2 Vector and scalar pion formfactors in two-flavour HPChPT

It is important to test the arguments behind HPChPT as much as possible. We can do a
nontrivial test by looking at the two-flavour case for the pion vector and scalar formfactors.
The vector form factor is defined in (11) and the scalar formfactor is defined by

〈

π0(p2)
∣

∣ūu+ d̄d
∣

∣π0(p1)
〉

= fπ
S (0)F

π
S (s) . (13)

We have factored out here as is customary [2, 22, 12] the value at s = 0. From the general
discussion we again expect that the leading non-analytic correction should be in both cases
of the form

f(s) = C(s)×
(

1 + α
m2

F 2
log

m2

µ2
+O(m2)

)

. (14)

In principle α could depend on s but it is calculable. C(s) is a free parameter in HPChPT
and can even be complex.

Calculating the formfactors from wave-function renormalization and the needed one-
loop diagrams we obtain

F π
V (s) = F πχ

V (s)

(

1 +
1

F 2
A(m2

π)

)

,

F π
S (s) = F πχ

S (s)

(

1 +
5

2F 2
A(m2

π)

)

. (15)

Here χ means in the limit mu = md = 0. This agrees with the large s expansion of the
one-loop result of [2].

In normal ChPT these formfactors are known fully analytically up till two-loop order
[12]. We can now choose a value of m2

π and s such that s ≫ m2
π but with both s and m2

π

in the regime of validity of standard HPChPT. The expansion for s ≫ m2
π can be done

and the result should be of the form (15) where the form of F πχ
V (s), F πχ

S (s) follows from
the one-loop calculation in the limit m2

π = 0. This gives

F πχ
V (s) = 1 +

s

16π2F 2

(

5

18
− 16π2lr6 +

iπ

6
− 1

6
ln

s

µ2

)

,

F πχ
S (s) = 1 +

s

16π2F 2

(

1 + 16π2lr4 + iπ − ln
s

µ2

)

. (16)

Let us see what happens when the full two-loop results are taken into account. Our
arguments still hold as long as we are working at the desired order i.e. O(m2

π). On the
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other hand now different kind of terms arise. Some of them are suppressed by m4
π with or

without logarithms and so can be neglected. The ones like s2 or s2 log s2/µ2 and without
log(m2

π/µ
2) cannot be predicted by HPChPT and are absorbed in the unknown part of the

coefficient C(s) of (14). Terms like s2 log2m2
π/µ

2 or s2 logm2
π/µ

2 can also arise. Those not
only would be large in our limit, but even divergent when mπ → 0, therefore they must
cancel. Terms like sm2

π log
2m2

π/µ
2 are predicted by HPChPT not to occur. Finally there

are terms as sm2
π log(m

2
π/µ

2) and sm2
π log(m

2
π/µ

2) log(s/µ2) which are of special interest.
The coefficients of these are predicted by HPChPT. They are given by (16) and (15).
Performing the expansion of the full two-loop result for s ≫ m2

π we indeed find that the
result is of the required form with the chiral limit value given exactly by (16). This is a
rather nontrivial check on HPChPT.

4 B → M and D → M transitions

4.1 Definition of formfactors

In this section we review the formalism for the transitions of a B or a D meson into a
light pseudoscalar meson (π, K, η). We restrict ourselves to the case of a B meson, but
the same definitions hold also for the D-decay. All the following discussion can be found
also in [11] for the two-flavour case. We report it here for the sake of completeness. The
hadronic current for pseudoscalar to pseudoscalar vector transitions (Pi(q̄i, q) → Pf(q̄f , q))
has the structure

〈Pf(pf ) |qiγµqf |Pi(pi)〉 = (pi + pf)µf+(q
2) + (pi − pf)µf−(q

2) (17)

=

[

(pi + pf )µ − qµ
(m2

i −m2
f )

q2

]

f+(q
2) + qµ

(m2
i −m2

f )

q2
f0(q

2),

where qµ is the momentum transfer qµ = pµi − pµf . In our case Pf is a light pseudoscalar
meson, Pi is a B meson and qi = b. For example, to find the B0 → π+ formfactors we need
then to evaluate the hadron matrix elements of the quark bilinear bγµq, where q = u.

Parity invariance, heavy quark and chiral symmetry dictate that the matching of QCD
bilinears onto operators of HMChPT take the form [24, 19],

b̄γµqa ∝ c
{

Tr
[

γµ
(

u†
ab + uab

)

Hb(v)
]

+ Tr
[

γ5γ
µ
(

u†
ab − uab

)

Hb(v)
]}

. (18)

If no hard pions appear in the final state we can use the definition of the decay constant
〈

0
∣

∣bγµγ5q
∣

∣B(pB)
〉

= iFBp
µ
B (19)

and obtain c = 1
2
FB

√
mB. This latter result does not hold for momenta away from q2max

in which case c is just an effective coupling depending on q2.
In HMChPT the definitions of the formfactors are chosen such that those are indepen-

dent of the heavy meson mass. So for example for the B → M transition
〈

M(pM)
∣

∣bγµq
∣

∣B(v)
〉

HMChPT
= [pMµ − (v · pM) vµ] fp(v · pM) + vµfv(v · pM). (20)
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In (20) v · pM is the energy of the light meson in the heavy meson rest frame

v · pM =
m2

B +m2
M − q2

2mB

. (21)

The formfactors defined in (17) and in (20) are related by matching the relativistic and
the HMChPT hadronic current:

√
mBfp(v · pM) = f+(q

2) +
m2

B −m2
M

q2
f+(q

2)− m2
B −m2

M

q2
f0(q

2)

= f+(q
2)− f−(q

2), (22)

√
mB (fv(v · pM)− fp(v · pM)v · pM) = mB

(

q2 −m2
B +m2

M

q2
f+(q

2) +
m2

B −m2
M

q2
f0(q

2)

)

= mB

(

f+(q
2) + f−(q

2)
)

. (23)

The
√
mB factors in (22) and (23) are due to the different normalizations of states used in

the two formalisms. At q2 ≈ q2max, neglecting terms suppressed by powers of mM and of
1/mB, (22) and (23) become

f0(q
2) =

1√
mB

fv(v · pM), f+(q
2) =

√
mB

2
fp(v · pM). (24)

We remark that the relations in (24) are valid only when q2 ≈ q2max contrary to what was
said in the original version1 of [11]. At general q2 away from q2max we must use (22) and
(23).

A matching similar to (18) has to be done also for the relativistic theory described in
Sect. 2.3. We identify four possible operators2

JL
µ =

1

2
E1tu

†∇µB +
i

2
E2tu

†uµB +
i

2
E3tu

†B∗
µ +

1

2
E4tu

† (∇νuµ)B
∗ν , (25)

where E1,. . ., E4, are effective couplings. t is a constant spurion vector transforming as
t → tg†L, so that J

L
µ is invariant under SU(3)L transformations. The heavy quark symmetry

implies mBE1 = E3. Analogously we can introduce a right-handed JR
µ current and thus an

axial-vector J5
µ = JR

µ −JL
µ and a vector JV

µ = JR
µ + JL

µ current. They are used respectively
to evaluate the amplitudes of B → ℓνℓ and the B → M formfactors as defined in (17). We
leave the discussion for the latter in Sects. 4.2 and 4.4, while we quote here the expression
of the B(Bs) decay constants that can be found evaluating the B(Bs) → vacuum matrix
element at one loop:

FB = E1

{

1 +
1

F 2

[(

3

8
+

9

8
g2
)

A(m2
π) +

(

1

4
+

3

4
g2
)

A(m2
K) +

(

1

24
+

1

8
g2
)

A(m2
η)

]}

,

1Notice that this does not invalidate the results of [11]. Indeed all the formfactors involved have the
same chiral logarithms, thus the tree-level part can still be factorized out, as shown in Sect. 4.2

2The last one is higher order but we included it since it has a different type of contraction of the Lorentz
indices and as an explicit check on the arguments of HPChPT [11].
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(1) (2)

Figure 1: The tree-level diagrams contributing to the amplitude. A double line corresponds
to a B, a zigzag line to a B∗, a single line to a light meson, i.e. π, K or η. A black circle
represents the insertion of a vector current.

(26)

FBs
= E1

{

1 +
1

F 2

[(

1

2
+

3

2
g2
)

A(m2
K) +

(

1

6
+

1

2
g2
)

A(m2
η)

]}

. (27)

A(m2) is defined in (A.1) in the appendix. Here we only quote the non-analytic dependence
on the light quark masses for the one-loop part. The results (26) and (27) agree with those
obtained with HMChPT [18]. We see that E1 plays the role of FH in [18] and that the
relativistic theory predicts the same coefficient of the chiral logarithm in A(m2) as expected.

4.2 The chiral logarithms away from the endpoint

In this section we present results for the formfactors of the vector transitions B → π,
B → K, B → η, Bs → K and Bs → η calculated using three-flavour HPChPT. The
results for the B → π transition in two-flavour ChPT can be found in [11]. We quote only
the relevant terms, i.e. the leading ones which contain free parameters and the predicted
chiral logarithms up to O(m2

M ). The tree-level diagrams contributing to the amplitude are
shown in Fig. 1. The formfactors at tree level read for HMChPT

fTree
p (v · pM) = CB→M

α

F

g

v · pM +∆
, fTree

v (v · pM) = CB→M
α

F
, (28)

where CB→M is a constant that changes depending on the meson transition and takes the
values

CB→M =



































1 B− → π0
√
2 B̄0 → π+

√
2 B → K

1√
3

B → η√
2 Bs → K

− 2√
3

Bs → η.

(29)

In (28) α is a constant that takes the value
√

mB/2FB at q2max. We also obtain c = α/
√
2.

Near q2max = (mB − mM)2 the results remain obviously the same, but the propagator in
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the first equation of (28) becomes 1/mM . In the case of the relativistic theory of Sect. 2.3,
we distinguish the formfactors for the two q2 ranges. At q2 away from q2max

fTree
+ (q2) =CB→M

{

−1

4

E3

F

mB

q2 −m2
B

g +
1

8

E1

F
− 1

4

E2

F

}

,

fTree
0 (q2) =CB→M

{

1

8

E1

F

(

1 +
q2

m2
B −m2

M

)

− 1

4

(

E2

F
+

E3

F

mB

q2 −m2
B

g

)(

1− q2

m2
B −m2

M

)}

.

(30)

At q2 ≈ q2max (30) simplifies to

fTree
+ (q2)q2≈q2

max
= CB→M

1

4

E3

F

1

2mM
g, fTree

0 (q2)q2≈q2
max

= CB→M
1

4

E1

F
. (31)

We stress once more that the relation of E1 and E3 to FB holds only when q2 ≈ q2max.
As the momentum transfer is out of this range the coupling constant are different at the
different values of q2 and can even be complex.

At one-loop we need to include the contributions of the wavefunction renormalization
Zπ, ZK , Zη, ZB and ZBs

. They are the same for HMChPT and the relativistic theory and
read:

Zπ = 1− 2

3

A(m2
π)

F 2
− 1

3

A(m2
K)

F 2
,

ZK = 1− 1

4

A(m2
π)

F 2
− 1

2

A(m2
K)

F 2
− 1

4

A(m2
η)

F 2
,

Zη = 1− A(m2
K)

F 2
,

ZB = 1 +
9

4
g2

A(m2
π)

F 2
+

3

2
g2

A(m2
K)

F 2
+

3

12
g2

A(m2
η)

F 2
,

ZBs
= 1 + 3g2

A(m2
K)

F 2
+ g2

A(m2
η)

F 2
. (32)

The one-loop corrections to the vector current JV
µ are shown in Fig. 2.

To find the results in HMChPT we expanded the one-loop calculation of [25] at v ·pM →
mB, m

2
M → 0. Note however that their results are only valid near the endpoint. The

arguments of HPChPT allow us to use their results also away from the endpoint.
In the relativistic theory we first calculated the formfactors and then we expanded the

loop integrals for m2
M ≪ m2

B, (m
2
B − q2). These latter expansions are given in App. A. No-

tice that we keep terms of the kind m/M in the expansion of the C̄ and B̄ functions (A.8),
(A.9) that had not been included explicitly in [11]. Those terms could cause corrections
like mM/F 2 in the final results, that would violate the heavy quark limit M → ∞. We
verified that all these corrections do cancel. To achieve the final results, we sum up all the
contributions coming from the several diagrams and include the wavefunction renormaliza-
tion pieces. This corresponds to sum (1/2)ZM for M = π,K, η and (1/2)ZB or (1/2)ZBs

,
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(3) (4) (5) (6)

(7) (8) (9) (10)

(11) (12) (13)

(14) (15) (16)

Figure 2: The one-loop diagrams contributing to the amplitude. Vertices and lines as in
Fig. 1

according to the external legs of the process under study, multiplied by the tree-level part
of the formfactors. We find for the different transitions that the two formfactors always
have the same chiral logarithms. We can write the results in the form

fv/p(v · pM) = fTree
v/p (v · pM)FB→M (33)

The chiral logarithms are in FB→M and read for the different transitions

FB→π = 1 +

(

3

8
+

9

8
g2
)

A(m2
π)

F 2
+

(

1

4
+

3

4
g2
)

A(m2
K)

F 2
+

(

1

24
+

1

8
g2
)

A(m2
η)

F 2
,

FB→K = 1 +
9

8
g2

A(m2
π)

F 2
+

(

1

2
+

3

4
g2
)

A(m2
K)

F 2
+

(

1

6
+

1

8
g2
)

A(m2
η)

F 2
,
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FB→η = 1 +

(

3

8
+

9

8
g2
)

A(m2
π)

F 2
+

(

1

4
+

3

4
g2
)

A(m2
K)

F 2
+

(

1

24
+

1

8
g2
)

A(m2
η)

F 2
,

FBs→K = 1 +
3

8

A(m2
π)

F 2
+

(

1

4
+

3

2
g2
)

A(m2
K)

F 2
+

(

1

24
+

1

2
g2
)

A(m2
η)

F 2
,

FBs→η = 1 +

(

1

2
+

3

2
g2
)

A(m2
K)

F 2
+

(

1

6
+

1

2
g2
)

A(m2
η)

F 2
. (34)

FBs→π vanishes due to the possible flavour quantum numbers.
In all the transitions we obtain, as predicted by our arguments, the same coefficients

for the relativistic theory. I.e.

f+/0(q
2) = fTree

+/0 (q
2)FB→M . (35)

The correction is also the same for the formfactors f0 and f+ or for fv and fp in all the
cases. Notice that (34) is also in agreement with the results in two-flavour HPChPT of
[11]

The chiral logarithms for both form factors are always the same in these decays as
can be seen in (35) and (33). This was also already the case for the Kℓ3 formfactors in
HPChPT [9] and we noticed it as well in [11]. It cannot simply be something like heavy
quark symmetry since it is not valid at the endpoint, see below and [24, 25]. This would also
not be a valid reason for the Kℓ3 case. An alternative explanation would be if something
similar to Low’s theorem for electromagnetic soft corrections holds. Low’s theorem states
that the amplitude for the process with Bremsstrahlung is proportional to the amplitude
without Bremsstrahlung by a factor depending only on the external legs. A corresponding
result holds for the infrared logarithms in virtual photon diagrams. But, if here there was
only dependence on the external legs, we obtain the relation

FB→K − FB→η − FBs→K + FBs→η = 0 . (36)

Inspection of the results in (34) show that this is not satisfied. The same argument would
have predicted that the chiral logarithms in F π

V (s) and F π
S (s) of (15) are the same which

is again clearly not the case.

4.3 Comparison with experiment

We did not find any lattice data published in a form that allows us to test the chiral
logarithms in (34). However, there are published data on the formfactors in D → π and
D → K semileptonic decays. The most precise data come from CLEO. In [4] are reported
the data points of f+(q

2)|Vcd| forD+(0) → π0(+) decays and of f+(q
2)|Vcs| forD0(+) → K+(0)

decays. We can then use the known value for the Cabibbo angle to get at the form factors.
We used the PDG value for sin θC = 0.2253 [26] to obtain |Vcd| = sin θC = 0.2253 and
|Vcs| = cos θC = 0.9743. In Fig. 3 on the left-hand-side we plot the CLEO data for both
D → π and D → K decays. We included only the D0 → π+(K+) data. A similar study
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 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

f +
(q

2 )

q2 [GeV2]

f+ D→π
f+ D→K

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2  1.4
f +

(q
2 )

q2 [GeV2]

f+ D→πFB→K/FB→π
f+ D→K

Figure 3: The measurements of CLEO [4] for the formfactor f+(q
2) for the D → π and the

D → K semileptonic decays. In the two plots we have divided by the values of the CKM
matrix elements |Vcd| = 0.2253 and |Vcs| = 0.9743 respectively. On the left we plot only
the formfactors without corrections, while on the right we plot each of the two members
of (37).

can be done using the D+ → π0(K0) since they give basically the same data points as
isospin symmetry dictates.

The following relation should approximately hold using (35) and the fact that the lowest
order result is the same.

f+D→K(q
2) = f+D→π(q

2)
FD→K

FD→π

, (37)

where FD→π(K) are the logarithmic corrections due to loop diagrams quoted in (34). The
corrections to relation (37) are mainly due to higher order terms i.e. O(m2

M ) without
logarithms. We expect these corrections to be about 10%. The value of g2, which enters
through the FD→π(K) of (37) is set to 0.44 [27]. However it does not affect the plots since
the coefficients of the chiral logarithms proportional to g2 are the same for the two decays.
The scale of renormalization µ is set to ΛChPT ≈ 1 GeV. In the right plot of Fig. 3 the
f+
D→K formfactor almost overlaps the f+

D→π one once the logarithmic corrections are taken
into account as (37) indicates. By comparing the left with the right plots in Fig. 3 it
is clear that our chiral logarithms compensate for the differences. Notice also that the
FD→π(K) contributes to a good 30% of the total formfactor but the total correction in the
ratio is much smaller. The terms which depend on g2 also cancel out in the ratio. (37)
holds in principle both for q2 ≪ q2max and at the endpoint q2 ≈ q2max. It should be kept
in mind that the endpoint has quite different logarithms which are given below. The q2max

are rather different in the two decays, being q2max ≈ (1.86− 0.49)2 = 1.88 GeV2 for the K
channel while q2max ≈ (1.86 − 0.14)2 = 2.9 GeV2 for the π channel. Therefore making a
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similar comparison at large q2 is in practice not possible. This is the reason why in Fig. 3
we stopped at q2 ≈ 1.5 GeV2, the rightmost point is already rather close to the endpoint
for D → K.

4.4 Chiral logarithms at the endpoint

At the endpoint HPChPT is not valid but standard HMChPT is. The B → K formfactors
were calculated in [24] and the B → π,K in [25]. The latter paper also discussed them
in the partially quenched case. We do not show diagram by diagram results, these can
be partly found in [24, 25]. Here we only quote the final results but we also calculate the
results for the B → η transitions.

Again the results in this limit must give the same outcome for the two theories, since one
is the relativistic limit of the other. So this is another check of the validity of our relativistic
theory. Notice that we are performing a three-flavour calculation and thus there are three
light masses entering into the loop-functions, i.e. mπ, mK and mη. This complicates the
structures of the functions involved and therefore of the non-analyticities arising. For this
reason a few more loop functions are also needed in the relativistic formalism compared
to the two-flavour case [11]. They have been reported in the appendix. We present the
results at q2 = q2max for each transition using

fp(q
2
max) = fTree

p (q2max)F
p
B→M , fv(q

2
max) = fTree

v (q2max)F
v
B→M . (38)

The relativistic theory correctly reproduces all these results provided that the substitutions
fTree
v (v · p) → fTree

0 (q2) and fTree
p (v · p) → fTree

+ (q2) are performed.

F p
B→π = 1 +

(

3

8
+

43

24
g2
)

A(m2
π)

F 2
+

(

1

4
+

9

4
g2 − m2

π

m2
K

g2
)

A(m2
K)

F 2

+

(

1

24
+

11

24
g2 − 2

9

m2
π

m2
η

g2
)

A(m2
η)

F 2
+ 2g2

(m2
π −m2

K)

F 2
F
(

mπ

mK

)

+
4

9
g2
(

m2
π −m2

η

)

F 2
F
(

mπ

mη

)

F v
B→π = 1 +

(

11

8
+

9

8
g2
)

A(m2
π)

F 2
+

(

−1

4
+

3

4
g2 +

m2
π

m2
K

)

A(m2
K)

F 2

+

(

1

24
+

1

8
g2
)

A(m2
η)

F 2
− 2

m2
π

F 2
F
(

mπ

mK

)

, (39)

F p
B→K = 1 +

9

8
g2
A(m2

π)

F 2
+

(

1

2
+

7

4
g2
)

A(m2
K)

F 2
+

(

1

6
+

23

24
g2 − 5

9

m2
K

m2
η

g2
)

A(m2
η)

F 2

+
10

9
g2
(

m2
K −m2

η

)

F 2
F
(

mK

mη

)

,

F v
B→K = 1 +

9

8
g2
A(m2

π)

F 2
+

(

3

2
+

3

4
g2
)

A(m2
K)

F 2
+

(

−1

3
+

1

8
g2 +

m2
K

m2
η

)

A(m2
η)

F 2
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−2
m2

K

F 2
F
(

mK

mη

)

, (40)

F p
B→η = 1 +

(

3

8
+

33

8
g2 − 2

m2
π

m2
η

g2
)

A(m2
π)

F 2
+

(

1

4
+

5

4
g2 − 1

3

m2
η

m2
K

g2
)

A(m2
K)

F 2

+

(

1

24
+

17

72
g2
)

A(m2
η)

F 2
+ 4g2

(

m2
η −m2

π

)

F 2
F
(

mη

mπ

)

+
2

3
g2
(

m2
η −m2

K

)

F 2
F
(

mη

mK

)

,

F v
B→η = 1 +

(

3

8
+

9

8
g2
)

A(m2
π)

F 2
+

(

−5

4
+

3

4
g2 + 3

m2
η

m2
K

)

A(m2
K)

F 2

+

(

1

24
+

1

8
g2
)

A(m2
η)

F 2
− 6

m2
η

F 2
F
(

mη

mK

)

, (41)

F p
Bs→K = 1 +

(

3

8
+

9

4
g2 − 3

2

m2
K

m2
π

g2
)

A(m2
π)

F 2

+

(

1

4
+ 2g2

)

A(m2
K)

F 2
+

(

1

24
+

7

12
g2 − 1

18

m2
K

m2
η

g2
)

A(m2
η)

F 2

+3g2
(m2

K −m2
π)

F 2
F
(

mK

mπ

)

+
1

9

(m2
K −m2

η)

F 2
F
(

mK

mη

)

,

F v
Bs→K = 1 +

(

−3

8
+

3

2

m2
K

m2
π

)

A(m2
π)

F 2
+

(

3

4
+

3

2
g2
)

A(m2
K)

F 2

+

(

− 5

24
+

1

2
g2 +

1

2

m2
K

m2
η

)

A(m2
η)

F 2
− 3

m2
K

F 2
F
(

mK

mπ

)

− m2
K

F 2
F
(

mK

mη

)

, (42)

F p
Bs→η = 1 +

(

1

2
+ 4g2 − 5

3

m2
η

m2
K

g2
)

A(m2
K)

F 2
+

(

1

6
+

17

18
g2
)

A(m2
η)

F 2

+
10

3

(m2
η −m2

K)

F 2
F
(

mη

mK

)

,

F v
Bs→η = 1 +

(

−1 +
3

2
g2 + 3

m2
K

m2
π

)

A(m2
K)

F 2
+

(

1

6
+

1

2
g2
)

A(m2
η)

F 2

−6
m2

η

F 2
F
(

mη

mK

)

, (43)

with

F
(

m1

m2

)

=















− 1
(4π)2

√
m2

2
−m2

1

m1

[

π
2
− arctan

(

m1√
m2

2
−m2

1

)]

m1 ≤ m2

1
(4π)2

√
m2

1
−m2

2

m1

tanh−1

(√
m2

1
−m2

2

m1

)

m1 ≥ m2

(44)

Our results agree with the earlier published ones in [24, 25].
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5 B → D transition

5.1 Definition of formfactors

In this section we present the formalism involved in the calculation of the B → D form-
factor. The matrix element for this decay is

〈

D(p′)
∣

∣b̄γµc
∣

∣B(p)
〉

= (p+ p′)µf̃+(q
2) + (p− p′)µf̃−(q

2) (45)

where qµ is the momentum transfer qµ = p− p′.
To perform the calculation in HMChPT we need the hadronic current corresponding

to the one of QCD:

b̄γµc → Tr
[

X(v, v′)H̄(v′)γµH(v)
]

(46)

where v, v′ are the fixed four-velocities of the B and D hadron respectively, while X(v, v′)
is the most general bispinor constructed starting from the invariants v and v′. As explained
in [20], spin symmetry for heavy quarks constrains X to be a scalar function −ξ(v · v′),
called the Isgur-Wise function [28]. The variable v · v′ is of special importance. It can be
related to q2 through the relation

w ≡ v · v′ = m2
B +m2

D − q2

2mBmD

. (47)

The allowed kinematic range is thus 0 ≤ w − 1 ≤ (mB−mD)2

2mBmD
. w is a measure of what is

the momentum transfer to the light degrees of freedom i.e. it gives us an indication of the
range of applicability of HMChPT. The light degrees of freedom have momentum of order
ΛQCDv

(′), thus the momentum transfer to the light system is q2light ≈ (ΛQCDv − ΛQCDv
′)2 =

2Λ2
QCD(1 − w). HMChPT can be applied as far as q2light ≪ m2

b,c which means on the scale
w ≈ 1 (region of zero recoil or near the endpoint) [29]. The matrix element in HMChPT is

〈

D(v′)
∣

∣b̄γµc
∣

∣B(v)
〉

HMChPT
= (v + v′)µh+(w). (48)

Evaluating explicitely the trace in (46) it is easy to obtain h+(w) = ξ(w) at leading order.
It can be also shown that heavy flavour symmetry implies ξ(1) = 1 [28, 20]. The result
that one single formfactor is enough to describe the matrix element of (48) can also be
achieved using the helicity formalism for counting the number of independent amplitudes
[20, 30]. To compare with the results of HMChPT it is convenient to reparametrize the
matrix element of QCD defined in (45) as

〈

D(p′)
∣

∣b̄γµc
∣

∣B(p)
〉

√
mBmD

= (v + v′)µh+(w) + (v − v′)µh−(w) . (49)

where the formfactors h±(w) are linear combinations of f̃±(q
2). Comparing (48) and (49)

it is straightforward to see that, at leading order in 1/mheavy, h+(w) must be the same
formfactor in the two formalisms and that h−(w) = 0.
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To perform the calculation in the relativistic framework we need the JL
µ current respon-

sible for the B → D transition, analogous to the one in (25). Therefore we write down
all the possible independent and chiral-invariant operators that respect also heavy quark
symmetries. They must contain interactions of the kind BD or B∗D∗. The first one is
needed for the tree-level diagram (1) in Fig. 4, while the second for the one-loop (2) in
Fig. 4. Thus the current is

JL
µ = X1

(

−tD†∇µB + t∇µD
†B
)

+X2

(

tD∗ †
α ∇µB

∗α − t∇µD
∗ †
α B∗µ)

+X3

(

−t∇αD∗ †
α B∗

µ + tD∗ †
µ ∇αB∗

α + t∇αD∗ †
µ B∗

α − tD∗ †
α ∇αB∗

µ

)

(50)

where X1, X2, X3 are effective couplings and the spurion t is now a singlet under the
chiral SU(n)L × SU(n)R symmetry since bγµc is a singlet. Heavy quark symmetry implies
furthermore that X1 = X2 = X3. From (50) it is easy to construct the vector current JV

µ

causing the decay.
Before concluding this section we stress once more that the zero recoil region is the

only one where HMChPT is in principle applicable, as shown by [29]. This does not mean
that it is not possible to extend the effective theory outside that range to calculate the
infrared singularities. Indeed exactly the same arguments applied to B → π semileptonic
decays go through for the B → D case as well, thus HPChPT can be used. As a matter
of fact there have been already confirmations of how well the effective theory can do when
w − 1 ≫ 0 (see for example Fig 2.5 in [20]). The use of HPChPT justify those results.

5.2 Chiral logarithms

We now present the results for the B(s) → D(s) semileptonic decay. The results in two-
flavour HMChPT at zero recoil (w = 1) can be found in [29]. The three-flavour extension
has been calculated in [31] and [32]. The result at one loop and leading order in 1/mB and
1/mD is

h+(w) = ξ(w)

[

1 +
g2

F 2

(

3

2
A(m2

π) + A(m2
K) +

1

6
A(m2

η)

)

(r(w)− 1)

]

, (51)

and for the Bs → Ds transition it is

h+(w) = ξ(w)

[

1 +
g2

F 2

(

2A(m2
K) +

2

3
A(m2

η)

)

(r(w)− 1)

]

, (52)

where

r(w) =
1√

w2 − 1
log (w +

√
w2 − 1), (53)

and r(1) = 1 so that the chiral logarithms cancel at zero recoil. While in [29] it has been
clearly stated that the calculation is valid only at the zero recoil point, the authors of
[31] and [32] present the result for the Isgur-Wise function in the whole energy range, but
no explicit arguments why it should be valid are given there. The arguments of HPChPT
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(1) (2)

Figure 4: The diagrams contributing to the B → D transition up to one-loop. Notation is
the same as in Fig. 1. The double lines at the left of the insertion of the current are always
B mesons, while the ones in the right are D mesons.

given before imply that the formula given there are indeed valid in the whole energy regime

0 ≤ w−1 ≤ (mB−mD)2

2mBmD
≈ 1.6. Note that here the correction is not a simple chiral logarithm

as in the previous cases but there is a strong dependence on w and the result connects
smoothly to the endpoint region.

We checked that our relativistic formulation gives the same result as [32]. The result
up to one-loop reads

h+(w) =
X1√
2

[

1 +
g2

F 2

(

3

2
A(m2

π) + A(m2
K) +

1

6
A(m2

η)

)

(

1− 2mBmDC̃(m2
D, m

2
B, q

2)
)

]

,

h−(w) = 0, (54)

where C̃(m2
D, m

2
B, q

2) comes from the three-point function C(m2, m2
B, m

2
D, m

2
B, q

2, m2
D) which

is needed to evaluate the loop diagram in Fig. 4. In (A.15) in the appendix we define the
function C̃(m2

D, m
2
B, q

2) and show that C̃(m2
D, m

2
B, q

2) = r(w)/(2mBmD). We also agree
with the Bs → Ds result of [32].

Comparing (54) with (51) it is straightforward to see that the two formalisms give the
same results as foreseen. Notice that now we do not need to distinguish the two limits
w − 1 ≈ 0 and w − 1 ≫ 0: the function r(w) describes the whole energy range.

Note that the reults here assume that there are no other nearby states, see e.g. the
discussion in [33].

6 Conclusions

In the paper we have extended HPChPT to several processes. First we calculated the
three-flavour results for the charged pion and kaon electromagnetic formfactor and the
two-flavour result for the pion vector and scalar formfactor. The latter have then been
used to check the underlying arguments of HPChPT in a two-loop setting.

Using the three-flavour spontaneous symmetry breaking pattern we could explicitely
evaluate the dependence on the light meson masses for the B → π formfactors in addition to
our earlier two-flavour results [11]. We could also extend the theory to other transitions as
the B → K and B → η transitions and the corresponding Bs transitions. The corrections
are of the expected size of about 30%. An unexplained feature of our results is that the two
possible formfactors have always the same chiral logarithm and we ruled out two possible
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explanations. A comparison with the experimental data for the D → π,K transition
formfactors has also performed. It shows that the corrections obtained go in the right
direction and are sizable. We have reproduced the known results at the endpoints and
added these for the transitions to η.

Finally, we justified and reproduced already known results for the formfactors of the
B → D transition at one loop.

Further investigations in this framework are desiderable, since they could significantly
improve the chiral extrapolations of the lattice data. In particular it could be very useful to
develop the same approach also for Partially Quenched ChPT. As stated above we expect
that a formalism with an explicit power counting can be formulated along the lines of
SCET.
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A Expansion of the needed loop integrals

We collect here the one-loop functions and their expansions, used to evaluate the diagrams
in Fig. 2 and in Fig. 4 in the framework of the relativistic theory of Sect. 2.3. Much of
what is written here is also present in the appendix of [11]. We need the one-, two- and
three-point functions defined as (d = 4− 2ǫ)

A(m2
1) =

1

i

∫

ddk

(2π)d
1

k2 −m2
1

, (A.1)

B(m2
1, m

2
2, p

2) =
1

i

∫

ddk

(2π)d
1

(k2 −m2
1)((p− k)2 −m2

2)
, (A.2)

C(m2
1, m

2
2, m

2
3, p

2
1, p

2
2, q

2) =
1

i

∫

ddk

(2π)d
1

(k2 −m2
1)((k − p1)2 −m2

2)((k − p1 − p2)2 −m2
3)
,

(A.3)

with q2 = (p1+ p2)
2. Two- and three-point functions with extra powers of momenta in the

numerator contribute too. They are defined similarly and the explicit definitions can be
found in [35]. All these functions can be rewritten in terms of (A.1), (A.2) and (A.3) [36].
The finite parts of A(m2

1) and B(m2
1, m

2
2, q

2) are using the standard ChPT subtractions
[2, 3, 37]

A(m2
1) = − m2

1

16π2
log

(

m2
1

µ2

)

, (A.4)
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B(m2
1, m

2
2, q

2) =
1

16π2

[

−1−
∫ 1

0

dx log

(

m1x+m2(1− x)− x(1− x)q2

µ2

)]

. (A.5)

As far as regards the B transitions to a light pseudoscalar meson, the three-point func-
tion C(m2

1, m
2
2, m

2
3, p

2
1, p

2
2, q

2) always depends on the masses as (m2
1,M

2,M2,M2, m2
2, q

2)
where m1 is the mass of the light meson in the loop, m2 is the mass of the light external
meson and M = mB. It can be rewritten using Feynman parameters x, y

C(m2
1,M

2,M2,M2, m2
2, q

2) = − 1

16π2

∫ 1

0

dx

∫ 1−x

0

dy×
[

m2
1(1− x− y) +m2

2(−y + y2) +M2(x+ y)2 + (q2 −M2 −m2
2)(−y + y(x+ y))

]−1
.

(A.6)

In order to find the appropriate chiral logarithms we expanded (A.5) and (A.6) for small
ratios m2/M2 . We quote only the terms of the expansions containing non-analyticities in
the light masses mi. First those only valid for q2 ≪ q2max, i.e. away from the endpoint:

B(m2,M2, q2) = − 1

M2 − q2
A(m2), (A.7)

C(m2
1,M

2,M2,M2, m2
2, q

2) =
1

(M2 − q2)

1

16π

m1

M
− 1

(M2 − q2)2
A(m2

1) . (A.8)

The next ones are those relevant at the endpoint or for wavefunction renormalization

B̄(m2,M2,M2) = − 1

16π

m

M
+

1

16π

m2

M2
+

1

2M2
A(m2), (A.9)

B̄(m2,M2, m2) = 0, (A.10)

B̄(m2
1,M

2, (M −m2)
2) =

1

M

[

2m2F
(

m1

m2

)

− m2

m2
1

A(m2
1)

]

+
1

M2

[

3m2
2F
(

m1

m2

)

+ A(m2
1)

(

1

2
− 3

2

m2
2

m2
1

)]

. (A.11)

The function F(m1/m2) was defined in (44). The expansion in (A.11) holds in both the
cases m2 ≶ m1 and also for m1 = m2 where it correctly reduces to the expansion reported
in the appendix of [11].

The expansions of the three-point functions at q2max are a bit more involved. The reason
is that the reduction formulas present a singularity at q2max = (M − m2)

2 for m2
2 = 0.

Furthermore we need to distinguish different cases depending on the m1 and m2 appearing
in the arguments of the three-loop functions. We use again the same technique used in [11].
We expand each of the functions directly from the Feynman parameter integral, without
first rewriting them in terms of (A.1), (A.2) and (A.3). To do this one rewrites the integral
in (A.6) using z = x+ y as

C(m2
1,M

2,M2,M2, m2
2, (M −m2)

2) = − 1

16π2

∫ 1

0

dz

∫ z

0

dy×

1

[M2z2 +m2
1 + 2m2My + (−m2

1z +m2
2(−y + y2)− 2m2Myz)]

. (A.12)
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The part in the denominator in brackets is always suppressed by at least m/M compared to
the first three terms for all values of z and y and we can thus expand in it. The remaining
integrals can be done with elementary means. The expansions obtained are many and
long, therefore we quote only those needed and restricted to those terms where a infrared
singularity appears. We do not quote terms like 1/(4π)2m/M3, also non-analytic for small
m, because they always cancel in the final results (39)-(43). The expansions read

C(m2
1,M

2,M2,M2, m2
2, (M −m2)

2) =
1

M2

[

−1

2

1

m2
1

A(m2
1) + F

(

m1

m2

)]

+
1

M3

[

F
(

m1

m2

)

m2 − 1

2

m2

m2
1

A(m2
1)

]

+
1

M4

[

−1

2

m2
2

m2
1

A(m2
1) + F

(

m1

m2

)(

m2
2 +

3

8
m2

1

)]

,

C11(m
2
1,M

2,M2,M2, m2
2, (M −m2)

2) =
1

M3

(

−F
(

m1

m2

)

m2 +
1

2

m2

m2
1

A(m2
1)

)

+
1

M4

[(

−1

2
+

13

12

m2
2

m2
1

)

A(m2
1)− F

(

m1

m2

)(

13

6
m2

2 −
1

6
m2

1

)]

,

C12(m
2
1,M

2,M2,M2, m2
2, (M −m2)

2) =
1

M3

(

−F
(

m1

m2

)(

2

3
m2 +

1

3

m2
1

m2

)

+
1

3

m2

m2
1

A(m1)

)

+
1

M4

[(

−1

4
+

5

6

m2
2

m2
1

)

A(m2
1)− F

(

m1

m2

)(

5

3
m2

2 +
1

3
m2

1

)]

,

C21(m
2
1,M

2,M2,M2, m2
2, (M −m2)

2) =
1

M4

[

−F
(

m1

m2

)(

−4

3
m2

2 +
1

3
m2

1

)

+A(m2
1)

(

1

2
− 2

3

m2
2

m2
1

)]

,

C22(m
2
1,M

2,M2,M2, m2
2, (M −m2)

2) =
1

M4

[

F
(

m1

m2

)(

4

5
m2

2 +
1

15
m2

1 +
2

15

m4
1

m2
2

)

+A(m2
1)

(

1

6
− 2

5

m2
2

m2
1

)]

,

C23(m
2
1,M

2,M2,M2, m2
2, (M −m2)

2) =
1

M4

[

F
(

m1

m2

)

m2
2 + A(m2

1)

(

1

4
− 1

2

m2
2

m2
1

)]

,

C24(m
2
1,M

2,M2,M2, m2
2, (M −m2)

2) =
1

M2

[

−F
(

m1

m2

)

1

3
(m2

2 −m2
1)

+A(m1)

(

−1

4
+

1

6

m2
2

m2
1

)]

. (A.13)

Setting the masses m1 = m2 all the expansions in (A.13) coincide correctly with the ones
reported in the appendix of [11]. The function F(m1/m2) is the one defined in (44).
Notice that it takes different forms depending if m1 ≶ m2. Furthermore for m1 = m2

F(m1/m2) = 0. The other three-point functions do not give any leading contribution.
We focus now on the semileptonic decay B → D. The three-point function entering in

the loop diagram of Fig. 4 is C(m2,M2
1 ,M

2
2 ,M

2
1 , q

2,M2
2 ), where m is the mass of the light
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meson in the loop, M1 = mB and M2 = mD. To expand it, similarly to what has been
done above, we first rewrite it in terms of the Feynman parameters x, y

C(m2,M2
1 ,M

2
2 ,M

2
1 , q

2,M2
2 ) = − 1

16π2

∫ 1

0

dx

∫ 1−x

0

dy×
[

m2(1− x− y) + x2M2
1 + y2M2

2 + xy(M2
1 +M2

2 − q2)
]−1

. (A.14)

The m2(x+ y) term in (A.14) is suppressed by at least one power of m so we can neglect
it. Setting x = X/M1, y = Y/M2 and w = (M2

1 +M2
2 − q2)/(2M1M2) the integral becomes

C(m2,M2
1 ,M

2
2 ,M

2
1 , q

2,M2
2 ) = − 1

16π2

1

M1M2

∫ M1

0

dX

∫ M2−M2

M1
X

0

dY
[

m2 +X2 + Y 2 + 2wXY
]−1

.

Then we can perform another change of variable and set polar coordinates X = R cosφ,
Y = R sin φ:

C(m2,M2
1 ,M

2
2 ,M

2
1 , q

2,M2
2 ) = − 1

16π2

1

M1M2

∫ π/2

0

dφ

∫ Rmax

0

dRR
[

m2 +R2 + 2wR2 sin (2φ)
]−1

,

where the upper boundary is Rmax = M2/(sinφ + M2/M1 cosφ). We are interested in
isolating the infrared singularities. Those only arise from the lower bound of the integral.
Therefore, performing the integral in dR, we keep only the term coming from the small R
region. However we checked explicitely that the large R region does not produce any soft
singularity at the desired order. The result for the integral in R reads

C(m2,M2
1 ,M

2
2 ,M

2
1 , q

2,M2
2 ) =

1

16π2

1

2M1M2

∫ π/2

0

dφ log

(

m2

µ2

)

[1 + 2w sin (2φ)]−1 + · · · ,

where the ellipsis are the terms coming from the upper bound and µ is a parameter with
the dimension of a mass. The integral in dφ can be done analitycally and after tedious
calculations we arrive to the final result

C(m2,M2
1 ,M

2
2 ,M

2
1 , q

2,M2
2 ) =

1

16π2

1

2M1M2

1√
w2 − 1

log
(

w +
√
w2 − 1

)

log

(

m2

µ

)

+ . . .

=
1

16π2
C̃(M2

2 ,M
2
1 , q

2) log

(

m2

µ2

)

+ . . . . (A.15)
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